BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8219038)

  • 1. Glycine-immunoreactive neurones in the cat brain stem reticular formation.
    Fort P; Luppi PH; Jouvet M
    Neuroreport; 1993 Sep; 4(9):1123-6. PubMed ID: 8219038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens.
    Adli DS; Stuesse SL; Cruce WL
    J Comp Neurol; 1999 Feb; 404(3):387-407. PubMed ID: 9952355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferents to the nucleus reticularis parvicellularis of the cat medulla oblongata: a tract-tracing study with cholera toxin B subunit.
    Fort P; Luppi PH; Jouvet M
    J Comp Neurol; 1994 Apr; 342(4):603-18. PubMed ID: 7518846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Glycine immunoreactive neurons in the medulla oblongata in cats].
    Fort P; Luppi PH; Wenthold R; Jouvet M
    C R Acad Sci III; 1990; 311(5):205-12. PubMed ID: 2119868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The raphe-reticular connection. An experimental study using the silver impregnation and horseradish peroxidase techniques in the rat.
    Petrovický P
    J Hirnforsch; 1981; 22(4):429-39. PubMed ID: 7310118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic L-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla.
    Kitahama K; Ikemoto K; Jouvet A; Araneda S; Nagatsu I; Raynaud B; Nishimura A; Nishi K; Niwa S
    J Chem Neuroanat; 2009 Oct; 38(2):130-40. PubMed ID: 19589383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization.
    Stornetta RL; McQuiston TJ; Guyenet PG
    J Comp Neurol; 2004 Nov; 479(3):257-70. PubMed ID: 15457502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery.
    Verret L; Léger L; Fort P; Luppi PH
    Eur J Neurosci; 2005 May; 21(9):2488-504. PubMed ID: 15932606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical demonstration of a medullary enkephalinergic pathway potentially implicated in the oro-facial muscle atonia of paradoxical sleep in the cat.
    Fort P; Rampon C; Gervasoni D; Peyron C; Luppi PH
    Sleep Res Online; 1998; 1(3):102-8. PubMed ID: 11382865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat].
    Sakai K; Kanamori N; Jouvet M
    C R Seances Acad Sci D; 1979 Oct; 289(6):557-61. PubMed ID: 230916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem projections to midline and intralaminar thalamic nuclei of the rat.
    Krout KE; Belzer RE; Loewy AD
    J Comp Neurol; 2002 Jun; 448(1):53-101. PubMed ID: 12012375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem glycinergic neurons and their activation during active (rapid eye movement) sleep in the cat.
    Morales FR; Sampogna S; Rampon C; Luppi PH; Chase MH
    Neuroscience; 2006 Sep; 142(1):37-47. PubMed ID: 16891059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat.
    Lee HS; Kim MA; Waterhouse BD
    J Comp Neurol; 2005 Jan; 481(2):179-93. PubMed ID: 15562508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Primary trigeminal projection to the brain stem-reticular formation. Experimental study in the rat].
    Insausti R; Gonzalo Sanz LM
    Rev Med Univ Navarra; 1981 Mar; 25(1):41-6. PubMed ID: 6977802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of trigeminal, spinal, and reticular neurons involved in the rat blink reflex.
    Zerari-Mailly F; Dauvergne C; Buisseret P; Buisseret-Delmas C
    J Comp Neurol; 2003 Dec; 467(2):173-84. PubMed ID: 14595767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of the glycinergic inputs to the rat locus coeruleus and dorsal raphe nuclei: a study combining retrograde tracing with glycine immunohistochemistry.
    Rampon C; Peyron C; Gervasoni D; Pow DV; Luppi PH; Fort P
    Eur J Neurosci; 1999 Mar; 11(3):1058-66. PubMed ID: 10103098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of glycine immunoreactivity in the brain of adult sea lamprey (Petromyzon marinus). Comparison with gamma-aminobutyric acid.
    Villar-Cerviño V; Barreiro-Iglesias A; Anadón R; Rodicio MC
    J Comp Neurol; 2008 Mar; 507(3):1441-63. PubMed ID: 18196541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit.
    Errico P; Barmack NH
    J Comp Neurol; 1993 Oct; 336(2):307-20. PubMed ID: 8245221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of reticulospinal neurons in the chicken by retrograde transport of WGA-HRP.
    Hassouna E; Yamamoto M; Imagawa T; Uehara M
    Tissue Cell; 2001 Apr; 33(2):141-7. PubMed ID: 11392666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KiSS-1 expression and metastin-like immunoreactivity in the rat brain.
    Brailoiu GC; Dun SL; Ohsawa M; Yin D; Yang J; Chang JK; Brailoiu E; Dun NJ
    J Comp Neurol; 2005 Jan; 481(3):314-29. PubMed ID: 15593369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.