These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 8219057)

  • 1. Organization of plastid-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria.
    Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):67-76. PubMed ID: 8219057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large ATP synthase operon of the red alga Antithamnion sp. resembles the corresponding operon in cyanobacteria.
    Kostrzewa M; Zetsche K
    J Mol Biol; 1992 Oct; 227(3):961-70. PubMed ID: 1404401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases.
    Valentin K; Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):77-85. PubMed ID: 8219058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplast ATPase genes in the diatom Odontella sinensis reflect cyanobacterial characters in structure and arrangement.
    Pancic PG; Strotmann H; Kowallik KV
    J Mol Biol; 1992 Mar; 224(2):529-36. PubMed ID: 1532839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion sp. and Cyanidium caldarium.
    Maid U; Zetsche K
    Plant Mol Biol; 1991 Apr; 16(4):537-46. PubMed ID: 1868197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization and expression of a phycobiliprotein gene cluster from the unicellular red alga Cyanidium caldarium.
    Valentin K; Maid U; Emich A; Zetsche K
    Plant Mol Biol; 1992 Oct; 20(2):267-76. PubMed ID: 1391770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SecA is plastid-encoded in a red alga: implications for the evolution of plastid genomes and the thylakoid protein import apparatus.
    Valentin K
    Mol Gen Genet; 1993 Jan; 236(2-3):245-50. PubMed ID: 8437571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids.
    Valentin K; Zetsche K
    Mol Gen Genet; 1990 Jul; 222(2-3):425-30. PubMed ID: 2274041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and expression of a plastid-encoded groEL homologous heat-shock gene in a thermophilic unicellular red alga.
    Maid U; Steinmüller R; Zetsche K
    Curr Genet; 1992 May; 21(6):521-5. PubMed ID: 1352188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical map of the plastid genome of the unicellular red alga Cyanidium caldarium strain RK-1.
    Ohta N; Kawano S; Kuroiwa T
    Curr Genet; 1994 Aug; 26(2):136-8. PubMed ID: 8001167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the rubisco operon from the multicellular red alga Antithamnion spec.
    Kostrzewa M; Valentin K; Maid U; Radetzky R; Zetsche K
    Curr Genet; 1990 Dec; 18(5):465-9. PubMed ID: 2078870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria.
    Vanselow C; Weber AP; Krause K; Fromme P
    Biochim Biophys Acta; 2009 Jan; 1787(1):46-59. PubMed ID: 19007746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Curr Genet; 1994 Jul; 26(1):79-86. PubMed ID: 7954900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two types of ftsZ genes isolated from the unicellular primitive red alga Galdieria sulphuraria.
    Takahara M; Takahashi H; Matsunaga S; Sakai A; Kawano S; Kuroiwa T
    Plant Cell Physiol; 1999 Aug; 40(8):784-91. PubMed ID: 10555302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequencing of the gene encoding the plasma membrane H(+)-ATPase from an acidophilic red alga, Cyanidium caldarium.
    Ohta H; Shirakawa H; Uchida K; Yoshida M; Matuo Y; Enami I
    Biochim Biophys Acta; 1997 Mar; 1319(1):9-13. PubMed ID: 9107313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria.
    Marquardt J; Wans S; Rhiel E; Randolf A; Krumbein WE
    Gene; 2000 Sep; 255(2):257-65. PubMed ID: 11024285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae.
    Linka M; Jamai A; Weber AP
    Plant Physiol; 2008 Nov; 148(3):1487-96. PubMed ID: 18799657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast genes encoding subunits of the H(+)-ATPase complex of Chlamydomonas reinhardtii are rearranged compared to higher plants: sequence of the atpE gene and location of the atpF and atpI genes.
    Woessner JP; Gillham NW; Boynton JE
    Plant Mol Biol; 1987 Mar; 8(2):151-8. PubMed ID: 24301050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny.
    Vogel H; Fischer S; Valentin K
    Plant Mol Biol; 1996 Nov; 32(4):685-92. PubMed ID: 8980520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence and phylogenetic implication of the ATPase subunits beta and epsilon encoded in the chloroplast genome of the brown alga Dictyota dichotoma.
    Leitsch CE; Kowallik KV
    Plant Mol Biol; 1992 May; 19(2):289-98. PubMed ID: 1535802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.