These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8219058)

  • 1. Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases.
    Valentin K; Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):77-85. PubMed ID: 8219058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of plastid-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria.
    Kostrzewa M; Zetsche K
    Plant Mol Biol; 1993 Oct; 23(1):67-76. PubMed ID: 8219057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120.
    Martín-Figueroa E; Navarro F; Florencio FJ
    FEBS Lett; 2000 Jul; 476(3):282-6. PubMed ID: 10913629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SecA is plastid-encoded in a red alga: implications for the evolution of plastid genomes and the thylakoid protein import apparatus.
    Valentin K
    Mol Gen Genet; 1993 Jan; 236(2-3):245-50. PubMed ID: 8437571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the nuclear gene encoding plastid glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa.
    Zhou YH; Ragan MA
    Curr Genet; 1994 Jul; 26(1):79-86. PubMed ID: 7954900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large ATP synthase operon of the red alga Antithamnion sp. resembles the corresponding operon in cyanobacteria.
    Kostrzewa M; Zetsche K
    J Mol Biol; 1992 Oct; 227(3):961-70. PubMed ID: 1404401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alfalfa NADH-dependent glutamate synthase: structure of the gene and importance in symbiotic N2 fixation.
    Vance CP; Miller SS; Gregerson RG; Samac DA; Robinson DL; Gantt JS
    Plant J; 1995 Sep; 8(3):345-58. PubMed ID: 7550373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene cloning, sequencing and enzymatic properties of glutamate synthase from the hyperthermophilic archaeon Pyrococcus sp. KOD1.
    Jongsareejit B; Rahman RN; Fujiwara S; Imanaka T
    Mol Gen Genet; 1997 May; 254(6):635-42. PubMed ID: 9202379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes.
    Navarro F; Chávez S; Candau P; Florencio FJ
    Plant Mol Biol; 1995 Feb; 27(4):753-67. PubMed ID: 7727752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The trpA gene on the plastid genome of Cyanidium caldarium strain RK-1.
    Ohta N; Sato N; Kawano S; Kuroiwa T
    Curr Genet; 1994 Apr; 25(4):357-61. PubMed ID: 8082179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion sp. and Cyanidium caldarium.
    Maid U; Zetsche K
    Plant Mol Biol; 1991 Apr; 16(4):537-46. PubMed ID: 1868197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism.
    Suzuki A; Knaff DB
    Photosynth Res; 2005; 83(2):191-217. PubMed ID: 16143852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny.
    Vogel H; Fischer S; Valentin K
    Plant Mol Biol; 1996 Nov; 32(4):685-92. PubMed ID: 8980520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.
    Bodył A
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of red algae: implications for plastid evolution.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4520-5. PubMed ID: 9114022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical map of the plastid genome of the unicellular red alga Cyanidium caldarium strain RK-1.
    Ohta N; Kawano S; Kuroiwa T
    Curr Genet; 1994 Aug; 26(2):136-8. PubMed ID: 8001167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae.
    Minoda A; Nagasawa K; Hanaoka M; Horiuchi M; Takahashi H; Tanaka K
    Plant Mol Biol; 2005 Oct; 59(3):375-85. PubMed ID: 16235106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate synthases from conifers: gene structure and phylogenetic studies.
    García-Gutiérrez Á; Cánovas FM; Ávila C
    BMC Genomics; 2018 Jan; 19(1):65. PubMed ID: 29351733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves.
    Valadier MH; Yoshida A; Grandjean O; Morin H; Kronenberger J; Boutet S; Raballand A; Hase T; Yoneyama T; Suzuki A
    FEBS J; 2008 Jun; 275(12):3193-206. PubMed ID: 18479460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.