These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 821926)

  • 1. Ferric hydroxamate transport without subsequent iron utilization in Bacillus megaterium.
    Arceneaux JE; Byers BR
    J Bacteriol; 1976 Sep; 127(3):1324-30. PubMed ID: 821926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active transport of iron in Bacillus megaterium: role of secondary hydroxamic acids.
    Davis WB; Byers BR
    J Bacteriol; 1971 Aug; 107(2):491-8. PubMed ID: 5000305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxamate recognition during iron transport from hydroxamate-ion chelates.
    Haydon AH; Davis WB; Arceneaux JE; Byers BR
    J Bacteriol; 1973 Sep; 115(3):912-8. PubMed ID: 4199516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of labeled hydroxamates during iron transport from hydroxamate-ion chelates.
    Arceneaux JE; Davis WB; Downer DN; Haydon AH; Byers BR
    J Bacteriol; 1973 Sep; 115(3):919-27. PubMed ID: 4199517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport of ferric schizokinen in Anabaena sp.
    Lammers PJ; Sanders-Loehr J
    J Bacteriol; 1982 Jul; 151(1):288-94. PubMed ID: 6806241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of siderophore receptors in membrane vesicles of Bacillus megaterium.
    Aswell JE; Haydon AH; Turner HR; Dawkins CA; Arceneaux JE
    J Bacteriol; 1977 Apr; 130(1):173-80. PubMed ID: 404281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium.
    Byers BR; Powell MV; Lankford CE
    J Bacteriol; 1967 Jan; 93(1):286-94. PubMed ID: 4960152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium.
    Davis WB; McCauley MJ; Byers BR
    J Bacteriol; 1971 Feb; 105(2):589-94. PubMed ID: 4993339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siderophore-mediated iron uptake in different strains of Anabaena sp.
    Goldman SJ; Lammers PJ; Berman MS; Sanders-Loehr J
    J Bacteriol; 1983 Dec; 156(3):1144-50. PubMed ID: 6227608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.
    Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE
    J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes.
    Jin B; Newton SM; Shao Y; Jiang X; Charbit A; Klebba PE
    Mol Microbiol; 2006 Feb; 59(4):1185-98. PubMed ID: 16430693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrisiderophore reductase activity in Bacillus megaterium.
    Arceneaux JE; Byers BR
    J Bacteriol; 1980 Feb; 141(2):715-21. PubMed ID: 6444944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis.
    Downer DN; Davis WB; Byers BR
    J Bacteriol; 1970 Jan; 101(1):181-7. PubMed ID: 4983647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of siderophore iron transport in enteric bacteria.
    Leong J; Neilands JB
    J Bacteriol; 1976 May; 126(2):823-30. PubMed ID: 131124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6.
    Pramanik A; Braun V
    J Bacteriol; 2006 Jun; 188(11):3878-86. PubMed ID: 16707680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae.
    Carrano CJ; Raymond KN
    J Bacteriol; 1978 Oct; 136(1):69-74. PubMed ID: 30750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two siderophores produced by Bacillus megaterium: A preliminary investigation into their potential as therapeutic agents.
    Chuljerm H; Deeudom M; Fucharoen S; Mazzacuva F; Hider RC; Srichairatanakool S; Cilibrizzi A
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129670. PubMed ID: 32565293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor.
    Gilis A; Khan MA; Cornelis P; Meyer JM; Mergeay M; van der Lelie D
    J Bacteriol; 1996 Sep; 178(18):5499-507. PubMed ID: 8808942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.