These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8219828)

  • 1. A new device for evacuating air from the cardiac chambers.
    Zhong BT
    Tex Heart Inst J; 1993; 20(3):235-7. PubMed ID: 8219828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative, two-dimensional echocardiography-guided removal of retained intracardiac air.
    Diehl JT; Ramos D; Dougherty F; Pandian NG; Payne DD; Cleveland RJ
    Ann Thorac Surg; 1987 Jun; 43(6):674-5. PubMed ID: 3592840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum-assisted venous drainage in single-access minimally invasive cardiac surgery.
    Kiyama H; Imazeki T; Katayama Y; Murai N; Mukouyama M; Yamauti N
    J Artif Organs; 2003; 6(1):20-4. PubMed ID: 14598120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of mini-cardiopulmonary bypass system with air-purge device to conventional bypass system.
    Ti LK; Goh BL; Wong PS; Ong P; Goh SG; Lee CN
    Ann Thorac Surg; 2008 Mar; 85(3):994-1000. PubMed ID: 18291186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst?
    Willcox TW
    J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel laparoscopic suction device for applying precise aspiration during laparoscopic surgery: sponge-tip suction tube.
    Ozer MT; Uzar AI; Eryilmaz M; Altinel O; Demirbas S; Arslan I; Tufan CT
    J Laparoendosc Adv Surg Tech A; 2008 Oct; 18(5):747-50. PubMed ID: 18699755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental use of an ultra-low prime neonatal cardiopulmonary bypass circuit utilizing vacuum-assisted venous drainage.
    Darling E; Kaemmer D; Lawson S; Smigla G; Collins K; Shearer I; Jaggers J
    J Extra Corpor Technol; 1998 Dec; 30(4):184-9. PubMed ID: 10537579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retained intracardiac air. Transesophageal echocardiography for definition of incidence and monitoring removal by improved techniques.
    Oka Y; Inoue T; Hong Y; Sisto DA; Strom JA; Frater RW
    J Thorac Cardiovasc Surg; 1986 Mar; 91(3):329-38. PubMed ID: 3951240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimized cardiopulmonary bypass combined with a smart suction device: the future of cardiopulmonary bypass?
    Stalder M; Gygax E; Immer FF; Englberger L; Tevaearai H; Carrel TP
    Heart Surg Forum; 2007; 10(3):E235-8. PubMed ID: 17599899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic changes during posterior vessel off-pump coronary artery bypass: comparison between deep pericardial sutures and vacuum-assisted apical suction device.
    Chang WI; Kim KB; Kim JH; Ham BM; Kim YL
    Ann Thorac Surg; 2004 Dec; 78(6):2057-62. PubMed ID: 15561035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam formation and acute air emboli with the maquet paediatric Quadrox I: a word of caution.
    Fouilloux V; Davey L; Van Arsdell GS; Honjo O
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):163-5. PubMed ID: 24706171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aortic surgery using total miniaturized cardiopulmonary bypass.
    Issitt RW; Mulholland JW; Oliver MD; Yarham GJ; Borra PJ; Morrison P; Dimarakis I; Anderson JR
    Ann Thorac Surg; 2008 Aug; 86(2):627-31. PubMed ID: 18640344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management.
    Mills NL; Ochsner JL
    J Thorac Cardiovasc Surg; 1980 Nov; 80(5):708-17. PubMed ID: 7431967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Design and preliminary experiment of an intelligentized physiologic pulsatile flow cardiac support system].
    Wei X; Wang D; Zhou R; Dong Y; Yao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):844-7. PubMed ID: 16156287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial clinical experience with the admiral oxygenator combined with separated suction.
    De Stefano E; Delay D; Horisberger J; von Segesser L
    Perfusion; 2008 Jul; 23(4):209-13. PubMed ID: 19181752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A complementary clinical method to minimize air embolism during open-heart surgery].
    Szabó Z; Träff S; Hermansson U; Tamás E; Maros T; Szentkirályi I
    Magy Seb; 2008; 61 Suppl():57-9. PubMed ID: 18504240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel device for reducing hemolysis provoked by cardiotomy suction during open heart cardiopulmonary bypass surgery: a randomized prospective study.
    Jegger D; Horisberger J; Jachertz M; Seigneul I; Tozzi P; Delay D; von Segesser LK
    Artif Organs; 2007 Jan; 31(1):23-30. PubMed ID: 17209957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invited commentary.
    Remadi JP
    Ann Thorac Surg; 2008 Mar; 85(3):1000-1. PubMed ID: 18291187
    [No Abstract]   [Full Text] [Related]  

  • 19. Aortic venting. Comparison of vent effectiveness.
    Marco JD; Barner HB
    J Thorac Cardiovasc Surg; 1977 Feb; 73(2):287-92. PubMed ID: 834067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.