These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 821985)
21. Bacterial degradation of polychlorinated biphenyls. I. Identification of some metabolic products from Aroclor 1242. Kaiser KL; Wong PT Bull Environ Contam Toxicol; 1974 Mar; 11(3):291-6. PubMed ID: 4215496 [No Abstract] [Full Text] [Related]
22. Biodegradation of PCB congeners by white rot fungus, Ceriporia sp. ZLY-2010, and analysis of metabolites. Hong CY; Gwak KS; Lee SY; Kim SH; Lee SM; Kwon M; Choi IG J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(12):1878-88. PubMed ID: 22755535 [TBL] [Abstract][Full Text] [Related]
23. Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Lambo AJ; Patel TR Curr Microbiol; 2006 Jul; 53(1):48-52. PubMed ID: 16775787 [TBL] [Abstract][Full Text] [Related]
24. [Biodegradation of a commercial mixture of polychlorinated biphenyls]. Casasco PV; Vidal CM; Vitale AA; Viale AA Rev Argent Microbiol; 1996; 28(1):39-44. PubMed ID: 8815459 [TBL] [Abstract][Full Text] [Related]
25. Degradation of disulfoton in soil and its translocation into asparagus. Szeto SY; Vernon RS; Brown MJ J Agric Food Chem; 1983; 31(2):217-20. PubMed ID: 6853850 [No Abstract] [Full Text] [Related]
26. Biodegradation of 2,4'-dichlorobiphenyl, a congener of polychlorinated biphenyl, by Pseudomonas isolates GSa and GSb. Gayathri D; Shobha KJ Indian J Exp Biol; 2015 Aug; 53(8):536-42. PubMed ID: 26349317 [TBL] [Abstract][Full Text] [Related]
27. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Sylvestre M Environ Microbiol; 2013 Mar; 15(3):907-15. PubMed ID: 23106850 [TBL] [Abstract][Full Text] [Related]
28. Behavior of dieldrin in soil: microplot field studies on the influence of soil type on biological activity and absorption by carrots. Harris CR; Sans WW J Econ Entomol; 1972 Apr; 65(2):333-5. PubMed ID: 5016655 [No Abstract] [Full Text] [Related]
29. Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Sierra I; Valera JL; Marina ML; Laborda F Chemosphere; 2003 Nov; 53(6):609-18. PubMed ID: 12962710 [TBL] [Abstract][Full Text] [Related]
30. Contributions to ecological chemistry CVII1. Fate of lindane-14C in lettuce, endives and soil under outdoor conditions. Kohli J; Weisgerber I; Klein W; Korte F J Environ Sci Health B; 1976; 11(1):23-32. PubMed ID: 58883 [TBL] [Abstract][Full Text] [Related]
31. Two-dimensional gas chromatography coupled to triple quadrupole mass spectrometry for the unambiguous determination of atropisomeric polychlorinated biphenyls in environmental samples. Bucheli TD; Brändli RC J Chromatogr A; 2006 Mar; 1110(1-2):156-64. PubMed ID: 16472816 [TBL] [Abstract][Full Text] [Related]
32. Phosphate uptake by lettuces and carrots from different soil depths in the field. Page ER; Gerwitz A J Sci Food Agric; 1969 Feb; 20(2):85-90. PubMed ID: 5777011 [No Abstract] [Full Text] [Related]
33. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry]. Yang K; Yao XY; Chen C; Shen CF; Qin ZH; Huang RL Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3083-90. PubMed ID: 26995917 [TBL] [Abstract][Full Text] [Related]
34. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil. Langlois VS; Rutter A; Zeeb BA J Environ Qual; 2011; 40(4):1130-4. PubMed ID: 21712582 [TBL] [Abstract][Full Text] [Related]
35. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Zeeb BA; Amphlett JS; Rutter A; Reimer KJ Int J Phytoremediation; 2006; 8(3):199-221. PubMed ID: 17120525 [TBL] [Abstract][Full Text] [Related]
36. Bioassays on the activation and deactivation of some new insecticides in a mineral soil and absorption of toxic components by rutabagas. Read DC J Econ Entomol; 1971 Aug; 64(4):796-800. PubMed ID: 5158344 [No Abstract] [Full Text] [Related]
37. Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Rezek J; Macek T; Mackova M; Triska J; Ruzickova K Environ Sci Technol; 2008 Aug; 42(15):5746-51. PubMed ID: 18754503 [TBL] [Abstract][Full Text] [Related]
38. Effects of randomly methylated-beta-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Fava F; Ciccotosto VF Appl Microbiol Biotechnol; 2002 Mar; 58(3):393-9. PubMed ID: 11935193 [TBL] [Abstract][Full Text] [Related]
39. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. Song M; Luo C; Li F; Jiang L; Wang Y; Zhang D; Zhang G Sci Total Environ; 2015 Jan; 502():426-33. PubMed ID: 25268572 [TBL] [Abstract][Full Text] [Related]
40. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Harkness MR; McDermott JB; Abramowicz DA; Salvo JJ; Flanagan WP; Stephens ML; Mondello FJ; May RJ; Lobos JH; Carroll KM Science; 1993 Jan; 259(5094):503-7. PubMed ID: 8424172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]