These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8220166)
1. Vasoactive intestinal peptide: its interactions with calmodulin and catalytic antibodies. Paul S; Ebadi M Neurochem Int; 1993 Sep; 23(3):197-214. PubMed ID: 8220166 [No Abstract] [Full Text] [Related]
2. Vasoactive intestinal peptide: role of calmodulin and catalytic antibodies. Bolin DR Neurochem Int; 1993 Sep; 23(3):221-7. PubMed ID: 8220168 [TBL] [Abstract][Full Text] [Related]
3. Vasoactive intestinal peptide: involvement of calmodulin and catalytic antibodies. Said SI Neurochem Int; 1993 Sep; 23(3):215-9. PubMed ID: 8220167 [No Abstract] [Full Text] [Related]
4. Transglutaminase-mediated polyamination of vasoactive intestinal peptide (VIP) Gln16 residue modulates VIP/PACAP receptor activity. De Maria S; Metafora S; Metafora V; Morelli F; Robberecht P; Waelbroeck M; Stiuso P; De Rosa A; Cozzolino A; Esposito C; Facchiano A; Cartenì M Eur J Biochem; 2002 Jul; 269(13):3211-9. PubMed ID: 12084061 [TBL] [Abstract][Full Text] [Related]
5. Analogues of VIP, helodermin, and PACAP discriminate between rat and human VIP1 and VIP2 receptors. Gourlet P; Vandermeers A; Van Rampelbergh J; De Neef P; Cnudde J; Waelbroeck M; Robberecht P Ann N Y Acad Sci; 1998 Dec; 865():247-52. PubMed ID: 9928018 [TBL] [Abstract][Full Text] [Related]
6. Identity of a membrane-bound vasoactive intestinal peptide-binding protein with calmodulin. Stallwood D; Brugger CH; Baggenstoss BA; Stemmer PM; Shiraga H; Landers DF; Paul S J Biol Chem; 1992 Sep; 267(27):19617-21. PubMed ID: 1527080 [TBL] [Abstract][Full Text] [Related]
7. New nonradioactive technique for vasoactive intestinal peptide-receptor-ligand-binding studies. Haberl I; Habringer DS; Andreae F; Artl A; Mosgoeller W Ann N Y Acad Sci; 2006 Jul; 1070():313-6. PubMed ID: 16888184 [TBL] [Abstract][Full Text] [Related]
8. Alanine scanning of VIP. Structure-function relationship for binding to human recombinant VPAC1 receptor. Nicole P; Rouyer-Fessard C; Couvineau A; Drouot C; Fulcrand P; Martinez J; Laburthe M Ann N Y Acad Sci; 2000; 921():352-6. PubMed ID: 11193851 [No Abstract] [Full Text] [Related]
9. Characterization of a novel VPAC(1) selective agonist and identification of the receptor domains implicated in the carboxyl-terminal peptide recognition. Van Rampelbergh J; Juarranz MG; Perret J; Bondue A; Solano RM; Delporte C; De Neef P; Robberecht P; Waelbroeck M Br J Pharmacol; 2000 Jun; 130(4):819-26. PubMed ID: 10864888 [TBL] [Abstract][Full Text] [Related]
10. Different vasoactive intestinal polypeptide receptor domains are involved in the selective recognition of two VPAC(2)-selective ligands. Juarranz MG; Van Rampelbergh J; Gourlet P; De Neef P; Cnudde J; Robberecht P; Waelbroeck M Mol Pharmacol; 1999 Dec; 56(6):1280-7. PubMed ID: 10570056 [TBL] [Abstract][Full Text] [Related]
11. Cross-chimeric analysis of selectivity of secretin and VPAC(1) receptor activation. Park CG; Ganguli SC; Pinon DI; Hadac EM; Miller LJ J Pharmacol Exp Ther; 2000 Nov; 295(2):682-8. PubMed ID: 11046106 [TBL] [Abstract][Full Text] [Related]
13. Autoantibody catalysis: no longer hostage to Occam's razor. Paul S Ann N Y Acad Sci; 1998 Dec; 865():238-46. PubMed ID: 9928017 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous solubilization of high-affinity receptors for VIP and glucagon and of a low-affinity binding protein for VIP, shown to be identical to calmodulin. Andersson M; Carlquist M; Maletti M; Marie JC FEBS Lett; 1993 Feb; 318(1):35-40. PubMed ID: 8382169 [TBL] [Abstract][Full Text] [Related]
15. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide receptor chimeras reveal domains that determine specificity of vasoactive intestinal polypeptide binding and activation. Hashimoto H; Ogawa N; Hagihara N; Yamamoto K; Imanishi K; Nogi H; Nishino A; Fujita T; Matsuda T; Nagata S; Baba A Mol Pharmacol; 1997 Jul; 52(1):128-35. PubMed ID: 9224822 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a direct interaction between the Thr11 residue of vasoactive intestinal polypeptide and Tyr184 located in the first extracellular loop of the VPAC2 receptor. Nachtergael I; Vertongen P; Langer I; Perret J; Robberecht P; Waelbroeck M Biochem J; 2003 Mar; 370(Pt 3):1003-9. PubMed ID: 12475394 [TBL] [Abstract][Full Text] [Related]
17. Cleavage of vasoactive intestinal peptide at multiple sites by autoantibodies. Paul S; Mei S; Mody B; Eklund SH; Beach CM; Massey RJ; Hamel F J Biol Chem; 1991 Aug; 266(24):16128-34. PubMed ID: 1874750 [TBL] [Abstract][Full Text] [Related]
18. Role of cysteine residues in the N-terminal extracellular domain of the human VIP 1 receptor for ligand binding. A site-directed mutagenesis study. Gaudin P; Couvineau A; Maoret JJ; Rouyer-Fessard C; Laburthe M Ann N Y Acad Sci; 1996 Dec; 805():585-9. PubMed ID: 8993444 [No Abstract] [Full Text] [Related]
19. Site-directed mutagenesis of human VIP1 versus VIP2 receptors. Nicole P; Du K; Couvineau A; Laburthe M Ann N Y Acad Sci; 1998 Dec; 865():378-81. PubMed ID: 9928033 [No Abstract] [Full Text] [Related]
20. A new effector mechanism for antibodies: catalytic cleavage of peptide bonds. Paul S Cold Spring Harb Symp Quant Biol; 1989; 54 Pt 1():283-6. PubMed ID: 2639756 [No Abstract] [Full Text] [Related] [Next] [New Search]