These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 8220339)
1. [Effect of space flight and head-down position on motoneuron- glia-capillary system of the rat bone marrow]. Krasnov IB; Poliakov IV; Drobyshev VI Aviakosm Ekolog Med; 1993; 27(1):38-42. PubMed ID: 8220339 [TBL] [Abstract][Full Text] [Related]
2. [Histochemistry and morphology of the anterior horns of spinal cord in rats after 9-day space flight]. Poliakov IV; Louri O; Edzherton VR; Krasnov IB Aviakosm Ekolog Med; 1995; 29(1):30-2. PubMed ID: 7663472 [TBL] [Abstract][Full Text] [Related]
3. Cytochemical investigations of proteins and RNA in spinal motoneurons and neurons of spinal ganglia of the rat after space flight. Gorbunova AV; Portugalov VV Aviat Space Environ Med; 1976 Jul; 47(7):708-10. PubMed ID: 971155 [TBL] [Abstract][Full Text] [Related]
4. [Cytochemical study of proteins and RNA in individual spinal cord motor neurons and intervertebral ganglion neurons of rats following space flight]. Gorbunova AV; Portugalov VV Kosm Biol Aviakosm Med; 1977; 11(4):24-8. PubMed ID: 904281 [TBL] [Abstract][Full Text] [Related]
5. [Effect of artificial gravity during space flight on protein and RNA concentration in motoneurons of the anterior horns of the spinal cord in rats]. Gorbunova AV; Portugalov VV Biull Eksp Biol Med; 1980 Sep; 90(9):372-5. PubMed ID: 6159022 [TBL] [Abstract][Full Text] [Related]
6. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission. Pompeiano O Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184 [TBL] [Abstract][Full Text] [Related]
7. Neuron-glia-capillary system in spinal cord of rats after 14-day space flight. Krasnov IB; Polyakov IV; Drobyshev VI Physiologist; 1992 Feb; 35(1 Suppl):S218-9. PubMed ID: 1589512 [No Abstract] [Full Text] [Related]
8. [Influences of primary and repeated modeling of microgravity effects on spinal motoneurons l5 in rats: cytological analysis]. Krasnov IB; Krasnikov GV; Burtseva TD; Piskareva GM; Chel'naia NA Aviakosm Ekolog Med; 2009; 43(1):63-8. PubMed ID: 19462785 [TBL] [Abstract][Full Text] [Related]
9. [Body fluid and electrolyte content in rat tissues after space flight in the "Space-2044" spacecraft]. Lavrova EA; Natochin IuV; Serova LV; Snetkova EV Aviakosm Ekolog Med; 1993; 27(1):43-7. PubMed ID: 8220340 [TBL] [Abstract][Full Text] [Related]
10. [Protein and ribonucleic acid metabolism in the central nervous system of rats during space flight in the "Kosmos-605" satellite]. Gazenko OG; Demin NN; Panov AN; Rubinskaia NL; Tigranian RA Kosm Biol Aviakosm Med; 1976; 10(4):14-9. PubMed ID: 979101 [TBL] [Abstract][Full Text] [Related]
11. [Comparative analysis of weightlessness and hypergravity effects on erythropoiesis in male and female mammals]. Serova LV; Chelńaia NA; Ivanova SIa Aviakosm Ekolog Med; 1993; 27(1):54-9. PubMed ID: 8220342 [TBL] [Abstract][Full Text] [Related]
12. Succinate dehydrogenase activity in rat dorsolateral ventral horn motoneurons at L6 after spaceflight and recovery. Ishihara A; Ohira Y; Roy RR; Nagaoka S; Sekiguchi C; Hinds WE; Edgerton VR J Gravit Physiol; 2002 Dec; 9(2):39-48. PubMed ID: 14638458 [TBL] [Abstract][Full Text] [Related]
13. No effect of hypergravity on adult rat ventral horn neuron size or SDH activity. Roy RR; Ishihara A; Moran MM; Wade CE; Edgerton VR Aviat Space Environ Med; 2001 Dec; 72(12):1107-12. PubMed ID: 11763112 [TBL] [Abstract][Full Text] [Related]
14. Changes in gravity influence rat postnatal motor system development: from simulation to space flight. Walton K; Heffernan C; Sulica D; Benavides L Gravit Space Biol Bull; 1997 Jun; 10(2):111-8. PubMed ID: 11540112 [TBL] [Abstract][Full Text] [Related]
15. Rat embryonic motoneurons in long-term co-culture with Schwann cells--a system to investigate motoneuron diseases on a cellular level in vitro. Haastert K; Grosskreutz J; Jaeckel M; Laderer C; Bufler J; Grothe C; Claus P J Neurosci Methods; 2005 Mar; 142(2):275-84. PubMed ID: 15698667 [TBL] [Abstract][Full Text] [Related]
16. [Effect of artificial gravitational force in space flight on the concentration of water soluble proteins in nerve tissue structures]. Gorbunova AV; Portugalov VV Biull Eksp Biol Med; 1978 Oct; 86(10):421-4. PubMed ID: 708869 [TBL] [Abstract][Full Text] [Related]
17. [Lipid peroxidation and antioxidant defense system in rats after a 14-day space flight in the "Space-2044" spacecraft]. Markin AA; Zhuravlëva OA Aviakosm Ekolog Med; 1993; 27(1):47-50. PubMed ID: 8220341 [TBL] [Abstract][Full Text] [Related]
18. Space flight effects on the hemopoietic function of bone marrow of the rat. Shvets VN; Portugalov VV Aviat Space Environ Med; 1976 Jul; 47(7):746-9. PubMed ID: 788697 [TBL] [Abstract][Full Text] [Related]
19. [Effect of space flight factors on bone marrow cells in the rat]. Benova DK; Bairakova AK; Baev IA; Nikolov KhG Kosm Biol Aviakosm Med; 1984; 18(4):41-3. PubMed ID: 6482361 [TBL] [Abstract][Full Text] [Related]
20. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Yamamoto Y; Henderson CE Dev Biol; 1999 Oct; 214(1):60-71. PubMed ID: 10491257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]