These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8220412)

  • 1. The effects of assistive devices on the oxygen cost, cardiovascular stress, and perception of nonweight-bearing ambulation.
    Holder CG; Haskvitz EM; Weltman A
    J Orthop Sports Phys Ther; 1993 Oct; 18(4):537-42. PubMed ID: 8220412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of metabolic cost and cardiovascular response to stair ascending and descending with walkers and canes in older adults.
    Foley M; Bowen B
    Arch Phys Med Rehabil; 2014 Sep; 95(9):1742-9. PubMed ID: 24755046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Study of Assisted Ambulation and Perceived Exertion With the Wheeled Knee Walker and Axillary Crutches in Healthy Subjects.
    Kocher BK; Chalupa RL; Lopez DM; Kirk KL
    Foot Ankle Int; 2016 Nov; 37(11):1232-1237. PubMed ID: 27521354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of assistive devices on cardiorespiratory demands in older adults.
    Foley MP; Prax B; Crowell R; Boone T
    Phys Ther; 1996 Dec; 76(12):1313-9. PubMed ID: 8960000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crutch length: effect on energy cost and activity intensity in non-weight-bearing ambulation.
    Mullis R; Dent RM
    Arch Phys Med Rehabil; 2000 May; 81(5):569-72. PubMed ID: 10807093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of energy expenditure and perceived exertion between standard axillary crutches, knee scooters, and a hands-free crutch.
    Canter DJ; Canter DJ; Reidy PT; Finucan TP; Timmerman KL
    PM R; 2024 Jun; 16(6):543-552. PubMed ID: 37950663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of shoulder joint forces during ambulation with crutches versus a walker in persons with incomplete spinal cord injury.
    Haubert LL; Gutierrez DD; Newsam CJ; Gronley JK; Mulroy SJ; Perry J
    Arch Phys Med Rehabil; 2006 Jan; 87(1):63-70. PubMed ID: 16401440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiovascular responses during nonweight-bearing and touchdown ambulation.
    Kathrins BP; O'Sullivan SD
    Phys Ther; 1984 Jan; 64(1):14-8. PubMed ID: 6691048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic and hemodynamic responses to walking with hand weights in older individuals.
    Evans BW; Potteiger JA; Bray MC; Tuttle JL
    Med Sci Sports Exerc; 1994 Aug; 26(8):1047-52. PubMed ID: 7968423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure during ambulation with ortho crutches and axillary crutches.
    Hinton CA; Cullen KE
    Phys Ther; 1982 Jun; 62(6):813-9. PubMed ID: 7079293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
    Clark BC; Manini TM; Ordway NR; Ploutz-Snyder LL
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1555-60. PubMed ID: 15375835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological responses to walking with and without Power Poles on treadmill exercise.
    Porcari JP; Hendrickson TL; Walter PR; Terry L; Walsko G
    Res Q Exerc Sport; 1997 Jun; 68(2):161-6. PubMed ID: 9200250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy cost of ambulation with crutches.
    Fisher SV; Patterson RP
    Arch Phys Med Rehabil; 1981 Jun; 62(6):250-6. PubMed ID: 7235917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy expenditure of ambulation using the Sure-Gait crutch and the standard axillary crutch.
    Annesley AL; Almada-Norfleet M; Arnall DA; Cornwall MW
    Phys Ther; 1990 Jan; 70(1):18-23. PubMed ID: 2294527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of energy consumption between the use of a walking frame, crutches and a Stride-on rehabilitation scooter.
    Patel N; Batten T; Roberton A; Enki D; Wansbrough G; Davis J
    Foot (Edinb); 2016 Aug; 28():7-11. PubMed ID: 27344234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy costs of walking on a dual-action treadmill in men and women.
    Butts NK; Knox KM; Foley TS
    Med Sci Sports Exerc; 1995 Jan; 27(1):121-5. PubMed ID: 7898327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of graded forward and backward walking on heart rate and oxygen consumption.
    Hooper TL; Dunn DM; Props JE; Bruce BA; Sawyer SF; Daniel JA
    J Orthop Sports Phys Ther; 2004 Feb; 34(2):65-71. PubMed ID: 15029939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axillary crutch walking: effects of three training programs.
    Bhambhani YN; Clarkson HM; Gomes PS
    Arch Phys Med Rehabil; 1990 Jun; 71(7):484-9. PubMed ID: 2350217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical demands of vacuuming in women using different models of vacuum cleaners.
    Norman JF; Kautz JA; Wengler HD; Lyden ER
    Med Sci Sports Exerc; 2003 Feb; 35(2):364-9. PubMed ID: 12569229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.