BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 822130)

  • 1. The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonas fluorescens UK1.
    Laakso S
    J Gen Microbiol; 1976 Aug; 96(2):391-4. PubMed ID: 822130
    [No Abstract]   [Full Text] [Related]  

  • 2. Observations on methionine transport in Pseudomonas fluorescens UK1.
    Mäntsälä P; Laakso S; Nurmikko V
    J Gen Microbiol; 1974 Sep; 84(1):19-27. PubMed ID: 4215863
    [No Abstract]   [Full Text] [Related]  

  • 3. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered regulation of macromolecular synthesis in methionine-inhibited cultures of Pseudomonas fluorescens UK1.
    Laakso S
    Chem Biol Interact; 1977 Feb; 16(2):201-6. PubMed ID: 403021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maltose metabolism of Pseudomonas fluorescens.
    Guffanti AA; Corpe WA
    J Bacteriol; 1975 Oct; 124(1):262-8. PubMed ID: 240805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of methanethiol from methionine by Brevibacterium linens CNRZ 918.
    Ferchichi M; Hemme D; Nardi M; Pamboukdjian N
    J Gen Microbiol; 1985 Apr; 131(4):715-23. PubMed ID: 3989511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible role of calcium in the formation of active extracellular proteinase by Pseudomonas fluorescens.
    McKellar RC; Cholette H
    J Appl Bacteriol; 1986 Jan; 60(1):37-44. PubMed ID: 3082843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose uptake and phosphorylation in Pseudomonas fluorescens.
    Eisenberg RC; Butters SJ; Quay SC; Friedman SB
    J Bacteriol; 1974 Oct; 120(1):147-53. PubMed ID: 4214229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the pantothenate transport system in Pseudomonas fluorescens P-2.
    Mäntsälä P
    Acta Chem Scand; 1972; 26(1):127-35. PubMed ID: 4623271
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of temperature shifts on extracellular proteinase-specific mRNA pools in Pseudomonas fluorescens B52.
    McKellar RC; Cholette H
    Appl Environ Microbiol; 1987 Aug; 53(8):1973-6. PubMed ID: 2444159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [DNA-methylase specificity in Pseudomonas fluorescens cells before and after infection by Bdellovibrio bacteriovorus].
    Bur'ianov IaI; Lambina VA; Bogdarina IG
    Dokl Akad Nauk SSSR; 1973 Feb; 208(6):1476-9. PubMed ID: 4633064
    [No Abstract]   [Full Text] [Related]  

  • 12. Sequence of the cobA gene encoding S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase of Pseudomonas fluorescens.
    De Mot R; Schoofs G; Nagy I; Vanderleyden J
    Gene; 1994 Dec; 150(1):199-200. PubMed ID: 7959054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial attack on phenolic ethers. Preliminary studies on systems transporting electrons to the substrate binding components in bacterial O-dealkylases.
    Cartwright NJ; Broadbent DA
    Microbios; 1974 Apr; 10(38):87-96. PubMed ID: 4211829
    [No Abstract]   [Full Text] [Related]  

  • 14. Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a.
    Adebusuyi A; Foght J
    Res Microbiol; 2013; 164(2):172-80. PubMed ID: 23142491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
    Ohtake H; Cervantes C; Silver S
    J Bacteriol; 1987 Aug; 169(8):3853-6. PubMed ID: 3112130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium.
    Ayling PD; Bridgeland ES
    J Gen Microbiol; 1972 Nov; 73(1):127-41. PubMed ID: 4569575
    [No Abstract]   [Full Text] [Related]  

  • 17. Amino acid incorporation in the subcellular structures of Pseudomonas fluorescens A3-12. I. The incorporation site of S35-methionine in the intact cells.
    NOZU K
    Jpn J Microbiol; 1959 Apr; 3():183-90. PubMed ID: 14427870
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of maltose by Pseudomonas fluorescens W.
    Guffanti A; Corpe WA
    Arch Microbiol; 1976 May; 108(1):75-83. PubMed ID: 818973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system.
    Ayling PD; Mojica-a T; Klopotowski T
    J Gen Microbiol; 1979 Oct; 114(2):227-46. PubMed ID: 396352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-mediated rifampicin resistance in Pseudomonas fluorescens.
    Chandrasekaran S; Lalithakumari D
    J Med Microbiol; 1998 Mar; 47(3):197-200. PubMed ID: 9511824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.