These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 822130)

  • 1. The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonas fluorescens UK1.
    Laakso S
    J Gen Microbiol; 1976 Aug; 96(2):391-4. PubMed ID: 822130
    [No Abstract]   [Full Text] [Related]  

  • 2. Observations on methionine transport in Pseudomonas fluorescens UK1.
    Mäntsälä P; Laakso S; Nurmikko V
    J Gen Microbiol; 1974 Sep; 84(1):19-27. PubMed ID: 4215863
    [No Abstract]   [Full Text] [Related]  

  • 3. Methionine degradation by Pseudomonas fluorescens UK1 and its methionine-utilizing mutant.
    Laakso S; Söderling E; Nurmikko V
    J Gen Microbiol; 1976 Jun; 94(2):305-12. PubMed ID: 820833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered regulation of macromolecular synthesis in methionine-inhibited cultures of Pseudomonas fluorescens UK1.
    Laakso S
    Chem Biol Interact; 1977 Feb; 16(2):201-6. PubMed ID: 403021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maltose metabolism of Pseudomonas fluorescens.
    Guffanti AA; Corpe WA
    J Bacteriol; 1975 Oct; 124(1):262-8. PubMed ID: 240805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of methanethiol from methionine by Brevibacterium linens CNRZ 918.
    Ferchichi M; Hemme D; Nardi M; Pamboukdjian N
    J Gen Microbiol; 1985 Apr; 131(4):715-23. PubMed ID: 3989511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible role of calcium in the formation of active extracellular proteinase by Pseudomonas fluorescens.
    McKellar RC; Cholette H
    J Appl Bacteriol; 1986 Jan; 60(1):37-44. PubMed ID: 3082843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose uptake and phosphorylation in Pseudomonas fluorescens.
    Eisenberg RC; Butters SJ; Quay SC; Friedman SB
    J Bacteriol; 1974 Oct; 120(1):147-53. PubMed ID: 4214229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the pantothenate transport system in Pseudomonas fluorescens P-2.
    Mäntsälä P
    Acta Chem Scand; 1972; 26(1):127-35. PubMed ID: 4623271
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of temperature shifts on extracellular proteinase-specific mRNA pools in Pseudomonas fluorescens B52.
    McKellar RC; Cholette H
    Appl Environ Microbiol; 1987 Aug; 53(8):1973-6. PubMed ID: 2444159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [DNA-methylase specificity in Pseudomonas fluorescens cells before and after infection by Bdellovibrio bacteriovorus].
    Bur'ianov IaI; Lambina VA; Bogdarina IG
    Dokl Akad Nauk SSSR; 1973 Feb; 208(6):1476-9. PubMed ID: 4633064
    [No Abstract]   [Full Text] [Related]  

  • 12. Sequence of the cobA gene encoding S-adenosyl-L-methionine: uroporhyrinogen III methyltransferase of Pseudomonas fluorescens.
    De Mot R; Schoofs G; Nagy I; Vanderleyden J
    Gene; 1994 Dec; 150(1):199-200. PubMed ID: 7959054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial attack on phenolic ethers. Preliminary studies on systems transporting electrons to the substrate binding components in bacterial O-dealkylases.
    Cartwright NJ; Broadbent DA
    Microbios; 1974 Apr; 10(38):87-96. PubMed ID: 4211829
    [No Abstract]   [Full Text] [Related]  

  • 14. Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a.
    Adebusuyi A; Foght J
    Res Microbiol; 2013; 164(2):172-80. PubMed ID: 23142491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
    Ohtake H; Cervantes C; Silver S
    J Bacteriol; 1987 Aug; 169(8):3853-6. PubMed ID: 3112130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium.
    Ayling PD; Bridgeland ES
    J Gen Microbiol; 1972 Nov; 73(1):127-41. PubMed ID: 4569575
    [No Abstract]   [Full Text] [Related]  

  • 17. Amino acid incorporation in the subcellular structures of Pseudomonas fluorescens A3-12. I. The incorporation site of S35-methionine in the intact cells.
    NOZU K
    Jpn J Microbiol; 1959 Apr; 3():183-90. PubMed ID: 14427870
    [No Abstract]   [Full Text] [Related]  

  • 18. Transport of maltose by Pseudomonas fluorescens W.
    Guffanti A; Corpe WA
    Arch Microbiol; 1976 May; 108(1):75-83. PubMed ID: 818973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system.
    Ayling PD; Mojica-a T; Klopotowski T
    J Gen Microbiol; 1979 Oct; 114(2):227-46. PubMed ID: 396352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-mediated rifampicin resistance in Pseudomonas fluorescens.
    Chandrasekaran S; Lalithakumari D
    J Med Microbiol; 1998 Mar; 47(3):197-200. PubMed ID: 9511824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.