BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8221729)

  • 1. A cellobiose phosphorylase from Cellvibrio gilvus recognizes only the beta-D-form of 5a-carba-glucopyranose.
    Kitaoka M; Ogawa S; Taniguchi H
    Carbohydr Res; 1993 Sep; 247():355-9. PubMed ID: 8221729
    [No Abstract]   [Full Text] [Related]  

  • 2. Acceptor specificity of cellobiose phosphorylase from Cellvibrio gilvus: synthesis of three branched trisaccharides.
    Percy A; Ono H; Hayashi K
    Carbohydr Res; 1998 Jun; 308(3-4):423-9. PubMed ID: 9711833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase.
    Kitaoka M; Sasaki T; Taniguchi H
    J Biochem; 1992 Jul; 112(1):40-4. PubMed ID: 1429509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of three hetero disaccharides, 4-O-beta-glucopyranosyl-6-deoxy-D-glucose, 4-O-beta-D-glucopyranosyl-D-mannosamine, and 4-O-beta-D-glucopyranosyl-D-mannose, and confirmation of their structures by C-13 NMR and MS.
    Tariq MA; Hayashi K
    Biochem Biophys Res Commun; 1995 Sep; 214(2):568-75. PubMed ID: 7677766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. METABOLIC NONEQUIVALENCE OF THE TWO GLUCOSE MOIETIES OF CELLOBIOSE IN CELLVIBRIO GILVUS.
    SWISHER EJ; STORVICK WO; KING KW
    J Bacteriol; 1964 Oct; 88(4):817-20. PubMed ID: 14219041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural dissection of the reaction mechanism of cellobiose phosphorylase.
    Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Biochem J; 2006 Aug; 398(1):37-43. PubMed ID: 16646954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda.
    Nidetzky B; Eis C; Albert M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):649-59. PubMed ID: 11042119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction on D-glucal by an inverting phosphorylase to synthesize derivatives of 2-deoxy-beta-D-arabino-hexopyranosyl-(1-->4)-D-glucose (2II-deoxycellobiose).
    Kitaoka M; Nomura S; Yoshida M; Hayashi K
    Carbohydr Res; 2006 Mar; 341(4):545-9. PubMed ID: 16430877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of Cellvibrio gilvus cellobiose phosphorylase.
    Sasaki T; Tanaka T; Nakagawa S; Kainuma K
    Biochem J; 1983 Mar; 209(3):803-7. PubMed ID: 6223623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli.
    Kim YK; Kitaoka M; Krishnareddy M; Mori Y; Hayashi K
    J Biochem; 2002 Aug; 132(2):197-203. PubMed ID: 12153715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray analysis of cellobiose phosphorylase from Cellvibrio gilvus.
    Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1877-8. PubMed ID: 15388938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate.
    Wildberger P; Brecker L; Nidetzky B
    Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.
    Saburi W; Tanaka Y; Muto H; Inoue S; Odaka R; Nishimoto M; Kitaoka M; Mori H
    Biosci Biotechnol Biochem; 2015; 79(6):969-77. PubMed ID: 25704402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase.
    Fushinobu S; Mertz B; Hill AD; Hidaka M; Kitaoka M; Reilly PJ
    Carbohydr Res; 2008 May; 343(6):1023-33. PubMed ID: 18346721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic synthesis of a library of beta-(1-->4) hetero- D-glucose and D-xylose-based oligosaccharides employing cellodextrin phosphorylase.
    Shintate K; Kitaoka M; Kim YK; Hayashi K
    Carbohydr Res; 2003 Sep; 338(19):1981-90. PubMed ID: 14499574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of pseudo-laminarabiose, -cellobiose, and -maltose (D-glucopyranosyl 5a-carba-D- and L-glucopyranoses).
    Ogawa S; Sugawa I; Shibata Y
    Carbohydr Res; 1991 Apr; 211(1):147-55. PubMed ID: 1773427
    [No Abstract]   [Full Text] [Related]  

  • 18. Galactosyl transfer ability of beta-(1-->4)-galactosyltransferase toward 5a-carba-sugars.
    Kajihara Y; Hashimoto H; Ogawa S
    Carbohydr Res; 2000 Jan; 323(1-4):44-8. PubMed ID: 10782284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune.
    Eis C; Albert M; Dax K; Nidetzky B
    FEBS Lett; 1998 Dec; 440(3):440-3. PubMed ID: 9872418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases.
    Saburi W
    Biosci Biotechnol Biochem; 2016 Jul; 80(7):1294-305. PubMed ID: 27031293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.