These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8221910)

  • 1. Peptidases in the CNS: formation of biologically active, receptor-specific peptide fragments.
    Davis TP; Konings PN
    Crit Rev Neurobiol; 1993; 7(3-4):163-74. PubMed ID: 8221910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologically active, non membrane-anchored precursors: an overview.
    Dicou E
    FEBS J; 2008 May; 275(9):1960-75. PubMed ID: 18384380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide truncation by dipeptidyl peptidase IV: a new pathway for drug discovery?
    Scharpé S; De Meester I
    Verh K Acad Geneeskd Belg; 2001; 63(1):5-32; discussion 32-3. PubMed ID: 11284388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis.
    Bernardini F; Warburton MJ
    Biochem J; 2002 Sep; 366(Pt 2):521-9. PubMed ID: 12038963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II receptors-antagonists, molecular biology, and signal transduction.
    Jagadeesh G
    Indian J Exp Biol; 1998 Dec; 36(12):1171-94. PubMed ID: 10093499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropeptide processing in regional brain slices: effect of conformation and sequence.
    Li ZW; Bijl WA; van Nispen JW; Brendel K; Davis TP
    J Pharmacol Exp Ther; 1990 May; 253(2):851-7. PubMed ID: 2140132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble neutral metallopeptidases: physiological regulators of peptide action.
    Shrimpton CN; Smith AI
    J Pept Sci; 2000 Jun; 6(6):251-63. PubMed ID: 10912905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central nervous system effects of the neurohypophyseal hormones and related peptides.
    de Wied D; Diamant M; Fodor M
    Front Neuroendocrinol; 1993 Oct; 14(4):251-302. PubMed ID: 8258377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved roles for peptidases in the processing of invertebrate neuropeptides.
    Isaac RE; Siviter RJ; Stancombe P; Coates D; Shirras AD
    Biochem Soc Trans; 2000; 28(4):460-4. PubMed ID: 10961940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of neuropeptides in regulating airway function. Postsecretory metabolism of peptides.
    Bunnett NW
    Am Rev Respir Dis; 1987 Dec; 136(6 Pt 2):S27-34. PubMed ID: 2446537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic release of membrane-bound angiotensin-converting enzyme: role of the juxtamembrane stalk sequence.
    Ehlers MR; Schwager SL; Scholle RR; Manji GA; Brandt WF; Riordan JF
    Biochemistry; 1996 Jul; 35(29):9549-59. PubMed ID: 8755736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide hormones and neuropeptides. Proteolytic processing of the precursor regulatory peptides.
    Bürger E
    Arzneimittelforschung; 1988 May; 38(5):754-61. PubMed ID: 3046618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptidases and the metabolic inactivation of insect neuropeptides.
    Isaac RE; Bland ND; Shirras AD
    Gen Comp Endocrinol; 2009 May; 162(1):8-17. PubMed ID: 19135055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Active metabolites derived from angiotensin II].
    Chansel D; Ardaillou R
    Nephrologie; 1998; 19(7):427-32. PubMed ID: 9857379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The role of enzyme systems in the regulation of the "trigger" function of physiologically active peptides (review of the literature)].
    Gomazkov OA
    Vopr Med Khim; 1988; 34(1):12-9. PubMed ID: 3285587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolysis of ProPTHrP(1-141) by "prohormone thiol protease" at multibasic residues generates PTHrP-related peptides: implications for PTHrP peptide production in lung cancer cells.
    Hook VY; Burton D; Yasothornsrikul S; Hastings RH; Deftos LJ
    Biochem Biophys Res Commun; 2001 Jul; 285(4):932-8. PubMed ID: 11467841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-beta peptides.
    Sun X; Becker M; Pankow K; Krause E; Ringling M; Beyermann M; Maul B; Walther T; Siems WE
    Eur J Pharmacol; 2008 Jun; 588(1):18-25. PubMed ID: 18495113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties.
    Meisel H; Bockelmann W
    Antonie Van Leeuwenhoek; 1999; 76(1-4):207-15. PubMed ID: 10532380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptides: functional cryptic peptides hidden in protein structures.
    Ueki N; Someya K; Matsuo Y; Wakamatsu K; Mukai H
    Biopolymers; 2007; 88(2):190-8. PubMed ID: 17245751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.