These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 8222090)
1. Role of nitric oxide, muscarinic receptors, and the ATP-sensitive K+ channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Yao Z; Gross GJ Circ Res; 1993 Dec; 73(6):1193-201. PubMed ID: 8222090 [TBL] [Abstract][Full Text] [Related]
2. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Yao Z; Gross GJ Circulation; 1994 Mar; 89(3):1229-36. PubMed ID: 8124811 [TBL] [Abstract][Full Text] [Related]
3. Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Mizumura T; Nithipatikom K; Gross GJ Circulation; 1995 Sep; 92(5):1236-45. PubMed ID: 7648671 [TBL] [Abstract][Full Text] [Related]
4. Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Yao Z; Gross GJ Am J Physiol; 1993 Jun; 264(6 Pt 2):H2221-5. PubMed ID: 8322953 [TBL] [Abstract][Full Text] [Related]
5. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Yao Z; Gross GJ Circulation; 1994 Apr; 89(4):1769-75. PubMed ID: 8149542 [TBL] [Abstract][Full Text] [Related]
6. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Gross GJ; Auchampach JA Circ Res; 1992 Feb; 70(2):223-33. PubMed ID: 1310443 [TBL] [Abstract][Full Text] [Related]
7. KATP channels and memory of ischemic preconditioning in dogs: synergism between adenosine and KATP channels. Yao Z; Mizumura T; Mei DA; Gross GJ Am J Physiol; 1997 Jan; 272(1 Pt 2):H334-42. PubMed ID: 9038954 [TBL] [Abstract][Full Text] [Related]
8. Isoflurane mimics ischemic preconditioning via activation of K(ATP) channels: reduction of myocardial infarct size with an acute memory phase. Kersten JR; Schmeling TJ; Pagel PS; Gross GJ; Warltier DC Anesthesiology; 1997 Aug; 87(2):361-70. PubMed ID: 9286901 [TBL] [Abstract][Full Text] [Related]
9. Effect of desflurane-induced preconditioning following ischemia-reperfusion on nitric oxide release in rabbits. Tsai SK; Lin SM; Huang CH; Hung WC; Chih CL; Huang SS Life Sci; 2004 Dec; 76(6):651-60. PubMed ID: 15567190 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the involvement of the ATP-sensitive potassium channel in a novel model of hypoxic preconditioning in dogs. Mei DA; Gross GJ Cardiovasc Res; 1995 Aug; 30(2):222-30. PubMed ID: 7585809 [TBL] [Abstract][Full Text] [Related]
11. The ATP-dependent potassium channel: an endogenous cardioprotective mechanism. Yao Z; Gross GJ J Cardiovasc Pharmacol; 1994; 24 Suppl 4():S28-34. PubMed ID: 7898105 [TBL] [Abstract][Full Text] [Related]
12. Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs. Yao Z; Gross GJ Am J Physiol; 1994 Nov; 267(5 Pt 2):H1888-94. PubMed ID: 7977819 [TBL] [Abstract][Full Text] [Related]
13. Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Toller WG; Kersten JR; Pagel PS; Hettrick DA; Warltier DC Anesthesiology; 1999 Nov; 91(5):1437-46. PubMed ID: 10551596 [TBL] [Abstract][Full Text] [Related]
14. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Auchampach JA; Grover GJ; Gross GJ Cardiovasc Res; 1992 Nov; 26(11):1054-62. PubMed ID: 1291082 [TBL] [Abstract][Full Text] [Related]
15. Myocardial and coronary endothelial protective effects of acetylcholine after myocardial ischaemia and reperfusion in rats: role of nitric oxide. Richard V; Blanc T; Kaeffer N; Tron C; Thuillez C Br J Pharmacol; 1995 Aug; 115(8):1532-8. PubMed ID: 8564215 [TBL] [Abstract][Full Text] [Related]
16. The role of nitric oxide, K(+)(ATP) channels, and cGMP in the preconditioning response of the rabbit. Horimoto H; Gaudette GR; Saltman AE; Krukenkamp IB J Surg Res; 2000 Jul; 92(1):56-63. PubMed ID: 10864483 [TBL] [Abstract][Full Text] [Related]
17. Does preconditioning protect the coronary vasculature from subsequent ischemia/reperfusion injury? Bauer B; Simkhovich BZ; Kloner RA; Przyklenk K Circulation; 1993 Aug; 88(2):659-72. PubMed ID: 8339428 [TBL] [Abstract][Full Text] [Related]
18. PD 81,723, an allosteric enhancer of the A1 adenosine receptor, lowers the threshold for ischemic preconditioning in dogs. Mizumura T; Auchampach JA; Linden J; Bruns RF; Gross GJ Circ Res; 1996 Sep; 79(3):415-23. PubMed ID: 8781475 [TBL] [Abstract][Full Text] [Related]
19. Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Ockaili R; Emani VR; Okubo S; Brown M; Krottapalli K; Kukreja RC Am J Physiol; 1999 Dec; 277(6):H2425-34. PubMed ID: 10600865 [TBL] [Abstract][Full Text] [Related]
20. KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Qian YZ; Levasseur JE; Yoshida K; Kukreja RC Am J Physiol; 1996 Jul; 271(1 Pt 2):H23-8. PubMed ID: 8760153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]