These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
500 related articles for article (PubMed ID: 8222173)
1. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
3. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime? Nyman J; Rundby C; Svenarud P; van der Linden J Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467 [TBL] [Abstract][Full Text] [Related]
4. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966 [TBL] [Abstract][Full Text] [Related]
5. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model. Wang S; Kunselman AR; Myers JL; Undar A ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749 [TBL] [Abstract][Full Text] [Related]
6. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268 [TBL] [Abstract][Full Text] [Related]
7. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model. Undar A; Ji B; Kunselman AR; Myers JL ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156 [TBL] [Abstract][Full Text] [Related]
8. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass. Wang S; Woitas K; Clark JB; Myers JL; Undar A Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]
11. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures. Dhami R; Wang S; Kunselman AR; Ündar A Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021 [TBL] [Abstract][Full Text] [Related]
12. Pulsatile versus nonpulsatile cardiopulmonary bypass. No difference in brain blood flow or metabolism at 27 degrees C. Hindman BJ; Dexter F; Ryu KH; Smith T; Cutkomp J Anesthesiology; 1994 May; 80(5):1137-47. PubMed ID: 8017651 [TBL] [Abstract][Full Text] [Related]
13. A clinical evaluation of the gas transfer characteristics and gaseous microemboli production of two bubble oxygenators. Pearson DT; Holden MP; Poslad SJ; Murray A; Waterhouse PS Life Support Syst; 1984; 2(4):252-66. PubMed ID: 6441873 [TBL] [Abstract][Full Text] [Related]
14. Cardiopulmonary bypass impairs vascular endothelial relaxation: effects of gaseous microemboli in dogs. Feerick AE; Johnston WE; Steinsland O; Lin C; Wang Y; Uchida T; Prough DS Am J Physiol; 1994 Sep; 267(3 Pt 2):H1174-82. PubMed ID: 8092283 [TBL] [Abstract][Full Text] [Related]
15. A paradox of cerebral hyperperfusion in the face of cerebral hypotension: the effect of perfusion pressure on cerebral blood flow and metabolism during normothermic cardiopulmonary bypass. Philpott JM; Eskew TD; Sun YS; Dennis KJ; Foreman BH; Fairbrother SN; Brown PM; Koutlas TC; Chitwood WR; Lust RM J Surg Res; 1998 Jul; 77(2):141-9. PubMed ID: 9733601 [TBL] [Abstract][Full Text] [Related]
16. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
18. Comparison of bubble and membrane oxygenators in short and long perfusions. Clark RE; Beauchamp RA; Magrath RA; Brooks JD; Ferguson TB; Weldon CS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):655-66. PubMed ID: 491720 [TBL] [Abstract][Full Text] [Related]
19. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745 [TBL] [Abstract][Full Text] [Related]
20. Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass: an echocardiographic study. Geissler HJ; Allen SJ; Mehlhorn U; Davis KL; de Vivie ER; Kurusz M; Butler BD Ann Thorac Surg; 1997 Jul; 64(1):100-4. PubMed ID: 9236342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]