These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 8223492)
1. Drosophila protein phosphatase V functionally complements a SIT4 mutant in Saccharomyces cerevisiae and its amino-terminal region can confer this complementation to a heterologous phosphatase catalytic domain. Mann DJ; Dombrádi V; Cohen PT EMBO J; 1993 Dec; 12(12):4833-42. PubMed ID: 8223492 [TBL] [Abstract][Full Text] [Related]
2. Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Stefansson B; Brautigan DL Cell Cycle; 2007 Jun; 6(11):1386-92. PubMed ID: 17568194 [TBL] [Abstract][Full Text] [Related]
3. The SIT4 protein phosphatase functions in late G1 for progression into S phase. Sutton A; Immanuel D; Arndt KT Mol Cell Biol; 1991 Apr; 11(4):2133-48. PubMed ID: 1848673 [TBL] [Abstract][Full Text] [Related]
4. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Wang H; Wang X; Jiang Y Mol Biol Cell; 2003 Nov; 14(11):4342-51. PubMed ID: 14551259 [TBL] [Abstract][Full Text] [Related]
5. Human protein phosphatase PP6 regulatory subunits provide Sit4-dependent and rapamycin-sensitive sap function in Saccharomyces cerevisiae. Morales-Johansson H; Puria R; Brautigan DL; Cardenas ME PLoS One; 2009 Jul; 4(7):e6331. PubMed ID: 19621075 [TBL] [Abstract][Full Text] [Related]
6. SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Fernandez-Sarabia MJ; Sutton A; Zhong T; Arndt KT Genes Dev; 1992 Dec; 6(12A):2417-28. PubMed ID: 1334024 [TBL] [Abstract][Full Text] [Related]
7. Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. Stefansson B; Brautigan DL J Biol Chem; 2006 Aug; 281(32):22624-34. PubMed ID: 16769727 [TBL] [Abstract][Full Text] [Related]
8. The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. Bastians H; Ponstingl H J Cell Sci; 1996 Dec; 109 ( Pt 12)():2865-74. PubMed ID: 9013334 [TBL] [Abstract][Full Text] [Related]
9. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Luke MM; Della Seta F; Di Como CJ; Sugimoto H; Kobayashi R; Arndt KT Mol Cell Biol; 1996 Jun; 16(6):2744-55. PubMed ID: 8649382 [TBL] [Abstract][Full Text] [Related]
10. The yeast phosphotyrosyl phosphatase activator protein, yPtpa1/Rrd1, interacts with Sit4 phosphatase to mediate resistance to 4-nitroquinoline-1-oxide and UVA. Douville J; David J; Fortier PK; Ramotar D Curr Genet; 2004 Aug; 46(2):72-81. PubMed ID: 15150670 [TBL] [Abstract][Full Text] [Related]
11. PPQ, a novel protein phosphatase containing a Ser + Asn-rich amino-terminal domain, is involved in the regulation of protein synthesis. Chen MX; Chen YH; Cohen PT Eur J Biochem; 1993 Dec; 218(2):689-99. PubMed ID: 8269960 [TBL] [Abstract][Full Text] [Related]
12. Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Singer T; Haefner S; Hoffmann M; Fischer M; Ilyina J; Hilt W Genetics; 2003 Aug; 164(4):1305-21. PubMed ID: 12930741 [TBL] [Abstract][Full Text] [Related]
13. Deviation of carbohydrate metabolism by the SIT4 phosphatase in Saccharomyces cerevisiae. Jablonka W; Guzmán S; Ramírez J; Montero-Lomelí M Biochim Biophys Acta; 2006 Aug; 1760(8):1281-91. PubMed ID: 16764994 [TBL] [Abstract][Full Text] [Related]
14. The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Shirra MK; Rogers SE; Alexander DE; Arndt KM Genetics; 2005 Apr; 169(4):1957-72. PubMed ID: 15716495 [TBL] [Abstract][Full Text] [Related]
15. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. Tate JJ; Feller A; Dubois E; Cooper TG J Biol Chem; 2006 Dec; 281(49):37980-92. PubMed ID: 17015442 [TBL] [Abstract][Full Text] [Related]
16. Polymerase chain reactions using Saccharomyces, Drosophila and human DNA predict a large family of protein serine/threonine phosphatases. Chen MX; Chen YH; Cohen PT FEBS Lett; 1992 Jul; 306(1):54-8. PubMed ID: 1321058 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of conserved domains in the phosphotyrosyl phosphatase activator. Molecular cloning of the homologues from Drosophila melanogaster and Saccharomyces cerevisiae. Van Hoof C; Janssens V; Dinishiotu A; Merlevede W; Goris J Biochemistry; 1998 Sep; 37(37):12899-908. PubMed ID: 9737869 [TBL] [Abstract][Full Text] [Related]
18. Isolation of the gene encoding the Drosophila melanogaster homolog of the Saccharomyces cerevisiae GCN2 eIF-2alpha kinase. Olsen DS; Jordan B; Chen D; Wek RC; Cavener DR Genetics; 1998 Jul; 149(3):1495-509. PubMed ID: 9649537 [TBL] [Abstract][Full Text] [Related]
19. The SIT4 protein phosphatase is required in late G1 for progression into S phase. Sutton A; Lin F; Arndt KT Cold Spring Harb Symp Quant Biol; 1991; 56():75-81. PubMed ID: 1668092 [No Abstract] [Full Text] [Related]
20. The yeast translational allosuppressor, SAL6: a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension. Vincent A; Newnam G; Liebman SW Genetics; 1994 Nov; 138(3):597-608. PubMed ID: 7851758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]