BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 822395)

  • 1. Basic electrical properties of tight epithelia determined with a simple method.
    Erlij D
    Pflugers Arch; 1976 Jun; 364(1):91-3. PubMed ID: 822395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of amiloride on conductance of toad urinary bladder.
    Gordon LG
    J Membr Biol; 1980 Jan; 52(1):61-7. PubMed ID: 6767037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.
    DeLong J; Civan MM
    J Membr Biol; 1983; 72(3):183-93. PubMed ID: 6406672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current-voltage relations of the basolateral membrane in tight amphibian epithelia: use of nystatin to depolarize the apical membrane.
    Garty H
    J Membr Biol; 1984; 77(3):213-22. PubMed ID: 6422046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exocytotic events unrelated to regulation of water permeability in amphibian tight epithelia: effects of oxytocin, PMA and insulin on membrane capacitance, water and Na+ transport.
    Erlij D; Aelvoet I; Van Driessche W
    Biol Cell; 1989; 66(1-2):53-8. PubMed ID: 2508976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties of amphibian urinary bladder epithelia. I. Inverse relationship between potential difference and resistance in tightly mounted preparations.
    Higgins JT; Cesaro L; Gebler B; Frömter E
    Pflugers Arch; 1975 Jul; 358(1):41-56. PubMed ID: 808794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepithelial current-voltage relationships of toad urinary bladder and colon. Estimates of ENaA and shunt resistance.
    Macchia DD; Helman SI
    Biophys J; 1979 Sep; 27(3):371-92. PubMed ID: 122255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.
    Reuss L; Finn AL
    J Gen Physiol; 1974 Jul; 64(1):1-25. PubMed ID: 4209766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of epithelial Na+ permeability by protein kinase C is tissue specific.
    Chalfant ML; Civan JM; Peterson-Yantorno K; DiBona DR; O'Brien TG; Civan MM
    J Membr Biol; 1996 Aug; 152(3):207-15. PubMed ID: 8672082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toad urinary bladder as a model for studying transepithelial sodium transport.
    Civan MM; Garty H
    Methods Enzymol; 1990; 192():683-97. PubMed ID: 2074813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apical and basolateral membrane conductances in the TBM cell line.
    Horisberger JD
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1172-81. PubMed ID: 1905481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular potentials of toad urinary bladder.
    Nagel W; Van Driessche W
    Pflugers Arch; 1989 Oct; 415(1):121-3. PubMed ID: 2516305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further studies on the effect of aldosterone on electrical resistance of toad bladder.
    Spooner PM; Edelman IS
    Biochim Biophys Acta; 1975 Oct; 406(2):304-14. PubMed ID: 811257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual effects of amphotericin B on ion permeation in toad urinary bladder epithelium.
    Reuss L; Gatzy JT; Finn AL
    Am J Physiol; 1978 Nov; 235(5):F507-14. PubMed ID: 103440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia.
    Claude P; Goodenough DA
    J Cell Biol; 1973 Aug; 58(2):390-400. PubMed ID: 4199658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types.
    Desmedt L; Simaels J; Van Driessche W
    J Gen Physiol; 1993 Jan; 101(1):85-102. PubMed ID: 7679717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amiloride stimulation of sodium transport in the presence of calcium and a divalent cation chelator.
    Thurman CL; Higgins JT
    Biochim Biophys Acta; 1982 Aug; 689(3):561-6. PubMed ID: 6812629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistive properties of the epithelial membranes of the urinary bladder of the toad, Bufo marinus, determined using the fluorescent dye, RH160.
    Crowe WE; Leader JP
    Pflugers Arch; 1994 Jun; 427(3-4):210-8. PubMed ID: 8072838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apical sodium entry in split frog skin: current-voltage relationship.
    DeLong J; Civan MM
    J Membr Biol; 1984; 82(1):25-40. PubMed ID: 6334163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.