BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8224192)

  • 1. Acidic pH increases the oxidation of LDL by macrophages.
    Morgan J; Leake DS
    FEBS Lett; 1993 Nov; 333(3):275-9. PubMed ID: 8224192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of low density lipoprotein by iron or copper at acidic pH.
    Morgan J; Leake DS
    J Lipid Res; 1995 Dec; 36(12):2504-12. PubMed ID: 8847477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions?
    Leake DS
    Atherosclerosis; 1997 Mar; 129(2):149-57. PubMed ID: 9105556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Sep; 352(1):15-8. PubMed ID: 7925932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-ascorbate-phospholipid mediated modification of low density lipoprotein.
    Greenspan P; Yu H; Gutman RL; Mao F; Ryu BH; Lou P
    Biochim Biophys Acta; 1996 Jun; 1301(3):242-8. PubMed ID: 8664335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Jan; 338(2):122-6. PubMed ID: 8307168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxypyridinones and desferrioxamine inhibit macrophage-mediated LDL oxidation by iron but not by copper.
    Lamb DJ; Hider RC; Leake DS
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):234S. PubMed ID: 8224391
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxidative modification of low-density lipoprotein by human polymorphonuclear leucocytes to a form recognised by the lipoprotein scavenger pathway.
    Katsura M; Forster LA; Ferns GA; Anggård EE
    Biochim Biophys Acta; 1994 Jul; 1213(2):231-7. PubMed ID: 8025135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages.
    Lamb DJ; Mitchinson MJ; Leake DS
    FEBS Lett; 1995 Oct; 374(1):12-6. PubMed ID: 7589497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages require both iron and copper to oxidize low-density lipoprotein in Hanks' balanced salt solution.
    Kritharides L; Jessup W; Dean RT
    Arch Biochem Biophys; 1995 Oct; 323(1):127-36. PubMed ID: 7487058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis.
    Hogg N; Kalyanaraman B; Joseph J; Struck A; Parthasarathy S
    FEBS Lett; 1993 Nov; 334(2):170-4. PubMed ID: 8224243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of ascorbate and dehydroascorbate on the oxidation of low-density lipoprotein.
    Stait SE; Leake DS
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):373-81. PubMed ID: 8973543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estradiol inhibits mesangial cell-mediated oxidation of low-density lipoprotein.
    Neugarten J; Ghossein C; Silbiger S
    J Lab Clin Med; 1995 Oct; 126(4):385-91. PubMed ID: 7561448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid can either increase or decrease low density lipoprotein modification.
    Stait SE; Leake DS
    FEBS Lett; 1994 Mar; 341(2-3):263-7. PubMed ID: 8137950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hypolipidemic natural product Commiphora mukul and its component guggulsterone inhibit oxidative modification of LDL.
    Wang X; Greilberger J; Ledinski G; Kager G; Paigen B; Jürgens G
    Atherosclerosis; 2004 Feb; 172(2):239-46. PubMed ID: 15019533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of heparin-treated low density lipoprotein by peroxidases.
    Upritchard JE; Sutherland WH
    Atherosclerosis; 1999 Oct; 146(2):211-9. PubMed ID: 10532677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of natural polyphenol compounds on the oxidative modification of low-density lipoproteins].
    Dushkin MI; Zykov AA; Pivovarova EN
    Biull Eksp Biol Med; 1993 Oct; 116(10):393-5. PubMed ID: 8117961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-course studies by neutron solution scattering and biochemical assays of the aggregation of human low-density lipoprotein during Cu(2+)-induced oxidation.
    Meyer DF; Mayans MO; Groot PH; Suckling KE; Bruckdorfer KR; Perkins SJ
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):417-26. PubMed ID: 7654177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of LDL to a biologically active form by derivatives of nitric oxide and nitrite in the absence of superoxide. Dependence on pH and oxygen.
    Chang GJ; Woo P; Honda HM; Ignarro LJ; Young L; Berliner JA; Demer LL
    Arterioscler Thromb; 1994 Nov; 14(11):1808-14. PubMed ID: 7947607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis.
    Yuan XM; Anders WL; Olsson AG; Brunk UT
    Atherosclerosis; 1996 Jul; 124(1):61-73. PubMed ID: 8800494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.