These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8224235)
1. Site-directed mutagenesis of AMP-binding residues in adenylate kinase. Alteration of substrate specificity. Okajima T; Tanizawa K; Fukui T FEBS Lett; 1993 Nov; 334(1):86-8. PubMed ID: 8224235 [TBL] [Abstract][Full Text] [Related]
2. Role of leucine 66 in the asymmetric recognition of substrates in chicken muscle adenylate kinase. Okajima T; Tanizawa K; Yoneya T; Fukui T J Biol Chem; 1991 Jun; 266(18):11442-7. PubMed ID: 2050660 [TBL] [Abstract][Full Text] [Related]
3. Site-directed random mutagenesis of AMP-binding residues in adenylate kinase. Okajima T; Tanizawa K; Fukui T J Biochem; 1993 Nov; 114(5):627-33. PubMed ID: 8113212 [TBL] [Abstract][Full Text] [Related]
4. Exchange of nucleoside monophosphate-binding domains in adenylate kinase and UMP/CMP kinase. Okajima T; Fukamizo T; Goto S; Fukui T; Tanizawa K J Biochem; 1998 Aug; 124(2):359-67. PubMed ID: 9685727 [TBL] [Abstract][Full Text] [Related]
5. Manipulating phosphorus stereospecificity of adenylate kinase by site-directed mutagenesis. Tsai MD; Jiang RT; Dahnke T; Shi Z Methods Enzymol; 1995; 249():425-43. PubMed ID: 7791622 [No Abstract] [Full Text] [Related]
6. Towards a mechanism of AMP-substrate inhibition in adenylate kinase from Escherichia coli. Sinev MA; Sineva EV; Ittah V; Haas E FEBS Lett; 1996 Nov; 397(2-3):273-6. PubMed ID: 8955362 [TBL] [Abstract][Full Text] [Related]
7. Conformational and functional significance of residue proline 17 in chicken muscle adenylate kinase. Sheng X; Pan X; Wang C; Zhang Y; Jing G FEBS Lett; 2001 Nov; 508(3):318-22. PubMed ID: 11728443 [TBL] [Abstract][Full Text] [Related]
8. Construction of the plasmid PMEX8-HAK1 and random site-directed mutagenesis of human cytosolic adenylate kinase. Ayabe T; Takenaka H; Takenaka O; Takenaka A; Nagahama H; Maruyama H; Yamamoto A; Nagata M; Koga Y; Sumida M; Hamada M Biochem Mol Biol Int; 1996 Feb; 38(2):373-81. PubMed ID: 8850533 [TBL] [Abstract][Full Text] [Related]
9. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Krishnamurthy H; Lou H; Kimple A; Vieille C; Cukier RI Proteins; 2005 Jan; 58(1):88-100. PubMed ID: 15521058 [TBL] [Abstract][Full Text] [Related]
10. Catalytic roles of lysines (K9, K27, K31) in the N-terminal domain in human adenylate kinase by random site-directed mutagenesis. Ayabe T; Park SK; Takenaka H; Sumida M; Uesugi S; Takenaka O; Hamada M Biochem Mol Biol Int; 1996 Nov; 40(5):897-906. PubMed ID: 8955878 [TBL] [Abstract][Full Text] [Related]
11. Assignment of the nucleotide binding sites and the mechanism of substrate inhibition of Escherichia coli adenylate kinase. Liang P; Phillips GN; Glaser M Proteins; 1991; 9(1):28-36. PubMed ID: 2017434 [TBL] [Abstract][Full Text] [Related]
12. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Resnick SM; Zehnder AJ Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379 [TBL] [Abstract][Full Text] [Related]
13. The role of Leu-190 in the function and stability of adenylate kinase. Yoneya T; Okajima T; Tagaya M; Tanizawa K; Fukui T J Biol Chem; 1990 Dec; 265(35):21488-93. PubMed ID: 2254309 [TBL] [Abstract][Full Text] [Related]
14. Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Panayiotou C; Solaroli N; Johansson M; Karlsson A Int J Biochem Cell Biol; 2010 Jan; 42(1):62-9. PubMed ID: 19766732 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of adenylate kinase. Structural and functional roles of the conserved arginine-97 and arginine-132. Dahnke T; Shi Z; Yan H; Jiang RT; Tsai MD Biochemistry; 1992 Jul; 31(27):6318-28. PubMed ID: 1627570 [TBL] [Abstract][Full Text] [Related]
16. The steady-state kinetics of the enzyme reaction tested by site-directed mutagenesis of hydrophobic residues (Val, Leu, and Cys) in the C-terminal alpha-helix of human adenylate kinase. Ayabe T; Park SK; Takenaka H; Takenaka O; Maruyama H; Sumida M; Onitsuka T; Hamada M J Biochem; 2000 Aug; 128(2):181-7. PubMed ID: 10920252 [TBL] [Abstract][Full Text] [Related]
17. NMR studies of the AMP-binding site and mechanism of adenylate kinase. Fry DC; Kuby SA; Mildvan AS Biochemistry; 1987 Mar; 26(6):1645-55. PubMed ID: 3036205 [TBL] [Abstract][Full Text] [Related]
18. In vitro mutagenesis studies at the arginine residues of adenylate kinase. A revised binding site for AMP in the X-ray-deduced model. Kim HJ; Nishikawa S; Tokutomi Y; Takenaka H; Hamada M; Kuby SA; Uesugi S Biochemistry; 1990 Feb; 29(5):1107-11. PubMed ID: 2157484 [TBL] [Abstract][Full Text] [Related]
19. Thiamin-triphosphate-synthesizing activity of mutant cytosolic adenylate kinases: significance of Arg-128 for substrate specificity. Shioda T; Yasuda S; Yamada K; Yamada M; Nakazawa A; Kawasaki T Biochim Biophys Acta; 1993 Feb; 1161(2-3):230-4. PubMed ID: 8431472 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of Gly-15 and Gly-20 in the glycine-rich region of adenylate kinase. Yoneya T; Tagaya M; Kishi F; Nakazawa A; Fukui T J Biochem; 1989 Feb; 105(2):158-60. PubMed ID: 2542234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]