These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8224243)

  • 81. Diffusion of nitric oxide into low density lipoprotein.
    Denicola A; Batthyány C; Lissi E; Freeman BA; Rubbo H; Radi R
    J Biol Chem; 2002 Jan; 277(2):932-6. PubMed ID: 11689557
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Methods to determine oxidation of low-density lipoproteins.
    Puhl H; Waeg G; Esterbauer H
    Methods Enzymol; 1994; 233():425-41. PubMed ID: 8015478
    [No Abstract]   [Full Text] [Related]  

  • 83. Tunable Nitric Oxide Release from S-Nitroso-N-acetylpenicillamine via Catalytic Copper Nanoparticles for Biomedical Applications.
    Pant J; Goudie MJ; Hopkins SP; Brisbois EJ; Handa H
    ACS Appl Mater Interfaces; 2017 May; 9(18):15254-15264. PubMed ID: 28409633
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cellular cysteine generation does not contribute to the initiation of LDL oxidation.
    Santanam N; Parthasarathy S
    J Lipid Res; 1995 Oct; 36(10):2203-11. PubMed ID: 8576646
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The role of thiols in oxidation of low-density lipoprotein by macrophages.
    Wood JL; Graham A
    Biochem Soc Trans; 1995 May; 23(2):242S. PubMed ID: 7672263
    [No Abstract]   [Full Text] [Related]  

  • 86. Fatty acid nitration in human low-density lipoprotein.
    Mastrogiovanni M; Trostchansky A; Rubbo H
    Arch Biochem Biophys; 2020 Jan; 679():108190. PubMed ID: 31738891
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Hydroxypyridinones and desferrioxamine inhibit macrophage-mediated LDL oxidation by iron but not by copper.
    Lamb DJ; Hider RC; Leake DS
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):234S. PubMed ID: 8224391
    [No Abstract]   [Full Text] [Related]  

  • 88. Continuous monitoring of intermediates and final products of oxidation of low density lipoprotein by means of UV-spectroscopy.
    Pinchuk I; Lichtenberg D
    Free Radic Res; 1996 May; 24(5):351-60. PubMed ID: 8733939
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Chlorogenic acid inhibits non-enzymatic glycation and oxidation of low density lipoprotein].
    Cai R; Chen S; Jiang S
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2018 Jan; 47(1):27-34. PubMed ID: 30146808
    [TBL] [Abstract][Full Text] [Related]  

  • 90. AL0671, a new potassium channel opener, inhibits nonenzymatic glycation of protein and LDL oxidation.
    Yamauchi T; Matzno S; Imada T; Eda M; Inoue Y; Nakamura N
    Gen Pharmacol; 1996 Mar; 27(2):257-62. PubMed ID: 8919639
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein.
    Möller M; Botti H; Batthyany C; Rubbo H; Radi R; Denicola A
    J Biol Chem; 2005 Mar; 280(10):8850-4. PubMed ID: 15632138
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Enzymatic synthesis and antioxidant property of gelatin-catechin conjugates.
    Chung JE; Kurisawa M; Uyama H; Kobayashi S
    Biotechnol Lett; 2003 Dec; 25(23):1993-7. PubMed ID: 14719812
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dynamics of oxidation of LDL and its inhibition by antioxidants.
    Niki E; Noguchi N
    Biofactors; 1997; 6(2):201-8. PubMed ID: 9260002
    [No Abstract]   [Full Text] [Related]  

  • 94. Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension.
    Knuchel R; Erlic Z; Gruber S; Amar L; Larsen CK; Gimenez-Roqueplo AP; Mulatero P; Tetti M; Pecori A; Pamporaki C; Langton K; Peitzsch M; Ceccato F; Prejbisz A; Januszewicz A; Adolf C; Remde H; Lenzini L; Dennedy M; Deinum J; Jefferson E; Blanchard A; Zennaro MC; Eisenhofer G; Beuschlein F
    Front Endocrinol (Lausanne); 2024; 15():1370525. PubMed ID: 38596218
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Racial Differences in Pain, Nutrition, and Oxidative Stress.
    Strath LJ; Sorge RE
    Pain Ther; 2022 Mar; 11(1):37-56. PubMed ID: 35106711
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Parsing the Role of PPARs in Macrophage Processes.
    Toobian D; Ghosh P; Katkar GD
    Front Immunol; 2021; 12():783780. PubMed ID: 35003101
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Obstructive sleep apnoea and cardiovascular disease: a literature review.
    Assallum H; Song TY; Aronow WS; Chandy D
    Arch Med Sci; 2021; 17(5):1200-1212. PubMed ID: 34522249
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review.
    Dore MP; Parodi G; Portoghese M; Pes GM
    Oxid Med Cell Longev; 2021; 2021():5529256. PubMed ID: 34007401
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dietary Interventions for Treatment of Chronic Pain: Oxidative Stress and Inflammation.
    Kaushik AS; Strath LJ; Sorge RE
    Pain Ther; 2020 Dec; 9(2):487-498. PubMed ID: 33085012
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The association between metabolic syndrome components and the development of atherosclerosis.
    Aboonabi A; Meyer RR; Singh I
    J Hum Hypertens; 2019 Dec; 33(12):844-855. PubMed ID: 31636352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.