These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8224506)

  • 1. Control of oxidative phosphorylation in muscle.
    Radda GK; Kemp GJ; Styles P; Taylor DJ
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):762-4. PubMed ID: 8224506
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle.
    Kemp GJ; Taylor DJ; Radda GK
    NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved brain and muscle mitochondrial respiration with CoQ. An in vivo study by 31P-MR spectroscopy in patients with mitochondrial cytopathies.
    Barbiroli B; Iotti S; Lodi R
    Biofactors; 1999; 9(2-4):253-60. PubMed ID: 10416038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy.
    Arnold DL; Taylor DJ; Radda GK
    Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of physical training of different duration on oxidative phosphorylation in skeletal muscles of albino rats].
    Samodanova GI
    Ukr Biokhim Zh; 1971; 43(2):190-4. PubMed ID: 5564626
    [No Abstract]   [Full Text] [Related]  

  • 6. Evidence for mitochondrial dysfunction in patients with alternating hemiplegia of childhood.
    Arnold DL; Silver K; Andermann F
    Ann Neurol; 1993 Jun; 33(6):604-7. PubMed ID: 8498840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of pangamic acid on oxidative phosphorylation in skeletal muscle mitochondria].
    Lenkova RI
    Tsitologiia; 1969 Nov; 11(11):1427-33. PubMed ID: 4246090
    [No Abstract]   [Full Text] [Related]  

  • 8. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients.
    Trenell MI; Sue CM; Thompson CH; Kemp GJ
    Eur J Appl Physiol; 2007 Mar; 99(5):541-7. PubMed ID: 17219172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin as an energy transducer.
    Laki K
    J Theor Biol; 1974 Mar; 44(1):117-30. PubMed ID: 4274624
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle.
    Lehninger AL
    Circ Res; 1974 Sep; 35 Suppl 3():83-90. PubMed ID: 4606316
    [No Abstract]   [Full Text] [Related]  

  • 11. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic disease of mitochondrial function evaluated by NMR and NIR spectroscopy of skeletal tissue.
    Chance B; Bank W
    Biochim Biophys Acta; 1995 May; 1271(1):7-14. PubMed ID: 7599229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standard magnetic resonance-based measurements of the Pi→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles.
    From AH; Ugurbil K
    Am J Physiol Cell Physiol; 2011 Jul; 301(1):C1-11. PubMed ID: 21368294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of oxidative phosphorylation in skeletal muscle.
    Kunz WS
    Biochim Biophys Acta; 2001 Mar; 1504(1):12-9. PubMed ID: 11239481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical adaptations to endurance exercise in muscle.
    Holloszy JO; Booth FW
    Annu Rev Physiol; 1976; 38():273-91. PubMed ID: 130825
    [No Abstract]   [Full Text] [Related]  

  • 16. Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: a new mitochondrial defect.
    Bakker HD; Scholte HR; Van den Bogert C; Ruitenbeek W; Jeneson JA; Wanders RJ; Abeling NG; Dorland B; Sengers RC; Van Gennip AH
    Pediatr Res; 1993 Apr; 33(4 Pt 1):412-7. PubMed ID: 8479824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of mitochondrial function and control in normal and diseased states.
    Radda GK; Odoom J; Kemp G; Taylor DJ; Thompson C; Styles P
    Biochim Biophys Acta; 1995 May; 1271(1):15-9. PubMed ID: 7599201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease.
    Matthews PM; Allaire C; Shoubridge EA; Karpati G; Carpenter S; Arnold DL
    Neurology; 1991 Jan; 41(1):114-20. PubMed ID: 1985275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial defects and anesthetic sensitivity.
    Morgan PG; Hoppel CL; Sedensky MM
    Anesthesiology; 2002 May; 96(5):1268-70. PubMed ID: 11981173
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of running to exhaustion on skeletal muscle mitochondria: a biochemical study.
    Terjung RL; Baldwin KM; Molé PA; Klinkerfuss GH; Holloszy JO
    Am J Physiol; 1972 Sep; 223(3):549-54. PubMed ID: 4341294
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.