These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 8224538)

  • 41. Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis.
    Onikubo T; Shechter D
    Int J Dev Biol; 2016; 60(7-8-9):271-276. PubMed ID: 27759155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xenopus laevis sperm proteins, previously identified as surface proteins with egg coat binding capability, are indeed histone H4, histone H3, and sperm specific protein SP2.
    Bernardini G; Donne ID; Norreri S; Negri A; Milzani A
    J Exp Zool; 1992 Aug; 263(2):210-4. PubMed ID: 1500885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptionally active Xenopus laevis somatic 5 S ribosomal RNA genes are packaged with hyperacetylated histone H4, whereas transcriptionally silent oocyte genes are not.
    Howe L; Ranalli TA; Allis CD; Ausió J
    J Biol Chem; 1998 Aug; 273(33):20693-6. PubMed ID: 9694810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Turnover of histone acetyl groups during sea urchin early development is not required for histone, heat shock and actin gene transcription.
    Jasinskas A; Kersulyte D; Langmore J; Steponaviciute D; Jasinskiene N; Gineitis A
    Biochim Biophys Acta; 1997 Mar; 1351(1-2):168-80. PubMed ID: 9116030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions.
    Shechter D; Nicklay JJ; Chitta RK; Shabanowitz J; Hunt DF; Allis CD
    J Biol Chem; 2009 Jan; 284(2):1064-74. PubMed ID: 18957438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lack of correlation between histone H4 acetylation and transcription during the Physarum cell cycle.
    Loidl P; Loidl A; Puschendorf B; Gröbner P
    Nature; 1983 Sep 29-Oct 5; 305(5933):446-8. PubMed ID: 6621695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental regulation and butyrate-inducible transcription of the Xenopus histone H1(0) promoter.
    Khochbin S; Wolffe AP
    Gene; 1993 Jun; 128(2):173-80. PubMed ID: 8514185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chromosome replication in early development of Xenopus laevis.
    Laskey RA
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():285-96. PubMed ID: 3831215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Somatic linker histone H1 is present throughout mouse embryogenesis and is not replaced by variant H1 degrees.
    Adenot PG; Campion E; Legouy E; Allis CD; Dimitrov S; Renard J; Thompson EM
    J Cell Sci; 2000 Aug; 113 ( Pt 16)():2897-907. PubMed ID: 10910774
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maternal histone deacetylase is accumulated in the nuclei of Xenopus oocytes as protein complexes with potential enzyme activity.
    Ryan J; Llinas AJ; White DA; Turner BM; Sommerville J
    J Cell Sci; 1999 Jul; 112 ( Pt 14)():2441-52. PubMed ID: 10381399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromatin assembly and transcriptional cross-talk in Xenopus laevis oocyte and egg extracts.
    Wang WL; Shechter D
    Int J Dev Biol; 2016; 60(7-8-9):315-320. PubMed ID: 27759158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The cellular distribution of histone H5 in embryonic and adult tissues of Xenopus laevis and chicken.
    Moorman AF; de Boer PA; Lamers WH; Charles R
    Acta Histochem Suppl; 1986; 32():105-9. PubMed ID: 3085145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methylation of nuclear proteins during early embryogenesis in sea urchin.
    Branno M; Tosi L
    Boll Soc Ital Biol Sper; 1980 Sep; 56(17):1778-84. PubMed ID: 7459100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histone acetylation in chromatin containing mouse satellite DNA.
    Pashev IG; Dimitrov SI; Ivanov IG; Markov GG
    Eur J Biochem; 1983 Jun; 133(2):379-82. PubMed ID: 6852048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development.
    Wang WL; Anderson LC; Nicklay JJ; Chen H; Gamble MJ; Shabanowitz J; Hunt DF; Shechter D
    Epigenetics Chromatin; 2014; 7():22. PubMed ID: 25302076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus.
    Szenker E; Lacoste N; Almouzni G
    Cell Rep; 2012 Jun; 1(6):730-40. PubMed ID: 22813747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus.
    Miller KE; Heald R
    J Cell Biol; 2015 Apr; 209(2):211-20. PubMed ID: 25897082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Occurrence of H1 subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians.
    Ohsumi K; Katagiri C
    Dev Biol; 1991 Sep; 147(1):110-20. PubMed ID: 1879604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [High rotational mobility of DNA in the chromatin of animal cells and its suppression during histone acetylation].
    Kraevskiĭ VA; Luchnik AN
    Dokl Akad Nauk SSSR; 1991; 318(4):1002-6. PubMed ID: 1654249
    [No Abstract]   [Full Text] [Related]  

  • 60. Platelet-derived growth factor A chain is maternally encoded in Xenopus embryos.
    Mercola M; Melton DA; Stiles CD
    Science; 1988 Sep; 241(4870):1223-5. PubMed ID: 3413486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.