These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8224545)

  • 1. A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
    Ruffins SW; Ettensohn CA
    Dev Biol; 1993 Nov; 160(1):285-8. PubMed ID: 8224545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell interactions and mesodermal cell fates in the sea urchin embryo.
    Ettensohn CA
    Dev Suppl; 1992; ():43-51. PubMed ID: 1299367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell movements and cell fate during zebrafish gastrulation.
    Ho RK
    Dev Suppl; 1992; ():65-73. PubMed ID: 1299369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo.
    Fernandez-Serra M; Consales C; Livigni A; Arnone MI
    Dev Biol; 2004 Apr; 268(2):384-402. PubMed ID: 15063175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell movements in the sea urchin embryo.
    Ettensohn CA
    Curr Opin Genet Dev; 1999 Aug; 9(4):461-5. PubMed ID: 10449348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
    Croce J; Duloquin L; Lhomond G; McClay DR; Gache C
    Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus.
    Ohguro Y; Takata H; Kominami T
    Dev Growth Differ; 2011 Jan; 53(1):110-23. PubMed ID: 21261616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL; McClay DR
    Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus.
    Martins GG; Summers RG; Morrill JB
    Dev Biol; 1998 Jun; 198(2):330-42. PubMed ID: 9659937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.