These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8224607)

  • 41. Cold requirement for maximal activity of the bacterial ice nucleation protein INAZ in transgenic plants.
    van Zee K; Baertlein DA; Lindow SE; Panopoulas N; Chen TH
    Plant Mol Biol; 1996 Jan; 30(1):207-11. PubMed ID: 8616239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxicity of smoke to epiphytic ice nucleation-active bacteria.
    Zagory D; Lindow SE; Parmeter JR
    Appl Environ Microbiol; 1983 Jul; 46(1):114-9. PubMed ID: 16346333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Release of Cell-Free Ice Nucleators from Three Recombinant Ice Zymomonas mobilis Strains.
    Varsaki A; Perisynakis A; Drainas C
    J Mol Microbiol Biotechnol; 2015; 25(4):277-83. PubMed ID: 26202869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward Understanding Bacterial Ice Nucleation.
    Lukas M; Schwidetzky R; Eufemio RJ; Bonn M; Meister K
    J Phys Chem B; 2022 Mar; 126(9):1861-1867. PubMed ID: 35084861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae.
    Schmid D; Pridmore D; Capitani G; Battistutta R; Neeser JR; Jann A
    FEBS Lett; 1997 Sep; 414(3):590-4. PubMed ID: 9323042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional aggregation of cell-free proteins enables fungal ice nucleation.
    Schwidetzky R; de Almeida Ribeiro I; Bothen N; Backes AT; DeVries AL; Bonn M; Fröhlich-Nowoisky J; Molinero V; Meister K
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2303243120. PubMed ID: 37943838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioprospecting for microbial products that affect ice crystal formation and growth.
    Christner BC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):481-9. PubMed ID: 19841917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.
    Hill TC; Moffett BF; Demott PJ; Georgakopoulos DG; Stump WL; Franc GD
    Appl Environ Microbiol; 2014 Feb; 80(4):1256-67. PubMed ID: 24317082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression of a bacterial ice nucleation gene in plants.
    Baertlein DA; Lindow SE; Panopoulos NJ; Lee SP; Mindrinos MN; Chen TH
    Plant Physiol; 1992 Dec; 100(4):1730-6. PubMed ID: 16653190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Release of cell-free ice nuclei by Erwinia herbicola.
    Phelps P; Giddings TH; Prochoda M; Fall R
    J Bacteriol; 1986 Aug; 167(2):496-502. PubMed ID: 3525514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of ice nucleation-active bacteria on plants in nature.
    Lindow SE; Arny DC; Upper CD
    Appl Environ Microbiol; 1978 Dec; 36(6):831-8. PubMed ID: 736541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury.
    Lindow SE; Hirano SS; Barchet WR; Arny DC; Upper CD
    Plant Physiol; 1982 Oct; 70(4):1090-3. PubMed ID: 16662619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters.
    Eickhoff L; Dreischmeier K; Zipori A; Sirotinskaya V; Adar C; Reicher N; Braslavsky I; Rudich Y; Koop T
    J Phys Chem Lett; 2019 Mar; 10(5):966-972. PubMed ID: 30742446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial Ice Nucleators.
    Schwidetzky R; Sudera P; Backes AT; Pöschl U; Bonn M; Fröhlich-Nowoisky J; Meister K
    J Phys Chem Lett; 2021 Nov; 12(44):10783-10787. PubMed ID: 34723523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization and recombinant expression of a divergent ice nucleation protein from 'Pseudomonas borealis'.
    Wu Z; Qin L; Walker VK
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1164-1169. PubMed ID: 19332818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Properties of a novel extracellular cell-free ice nuclei from ice-nucleating Pseudomonas antarctica IN-74.
    Muryoi N; Kawahara H; Obata H
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1950-8. PubMed ID: 14519981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A biological sensor for iron available to bacteria in their habitats on plant surfaces.
    Loper JE; Lindow SE
    Appl Environ Microbiol; 1994 Jun; 60(6):1934-41. PubMed ID: 16349283
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrostatic Interactions Control the Functionality of Bacterial Ice Nucleators.
    Lukas M; Schwidetzky R; Kunert AT; Pöschl U; Fröhlich-Nowoisky J; Bonn M; Meister K
    J Am Chem Soc; 2020 Apr; 142(15):6842-6846. PubMed ID: 32223131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis.
    Vanderveer TL; Choi J; Miao D; Walker VK
    Cryobiology; 2014 Aug; 69(1):110-8. PubMed ID: 24930584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A part of ice nucleation protein exhibits the ice-binding ability.
    Kobashigawa Y; Nishimiya Y; Miura K; Ohgiya S; Miura A; Tsuda S
    FEBS Lett; 2005 Feb; 579(6):1493-7. PubMed ID: 15733862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.