These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8225027)

  • 21. Lipofuscin component A2E does not reduce antioxidant activity of DOPA-melanin.
    Dontsov AE; Koromyslova AD; Sakina NL
    Bull Exp Biol Med; 2013 Mar; 154(5):624-7. PubMed ID: 23658884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Inhibition of lipid peroxidation by melanoprotein granules].
    Sakina NL; Dontsov AE; Kuznetsova GP; Ostrovskiĭ MA; Archakov AI
    Biokhimiia; 1980 Aug; 45(8):1476-80. PubMed ID: 6972234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related changes in the fluorescence of melanin and lipofuscin granules of the retinal pigment epithelium: a time-resolved fluorescence spectroscopy study.
    Docchio F; Boulton M; Cubeddu R; Ramponi R; Barker PD
    Photochem Photobiol; 1991 Aug; 54(2):247-53. PubMed ID: 1780361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium.
    Pitkänen L; Ranta VP; Moilanen H; Urtti A
    Pharm Res; 2007 Nov; 24(11):2063-70. PubMed ID: 17546409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.
    Zadlo A; Pilat A; Sarna M; Pawlak A; Sarna T
    Cell Biochem Biophys; 2017 Dec; 75(3-4):319-333. PubMed ID: 28401421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photobleaching of retinal pigment epithelium melanosomes reduces their ability to inhibit iron-induced peroxidation of lipids.
    Zadlo A; Rozanowska MB; Burke JM; Sarna TJ
    Pigment Cell Res; 2007 Feb; 20(1):52-60. PubMed ID: 17250548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of novel hybrid vitamin C derivatives: thermal stability and biological activity.
    Morisaki K; Ozaki S
    Chem Pharm Bull (Tokyo); 1996 Sep; 44(9):1647-55. PubMed ID: 8855360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study.
    Tso MO; Woodford BJ; Lam KW
    Curr Eye Res; 1984 Jan; 3(1):181-91. PubMed ID: 6690221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical review of the function of neuromelanin and an attempt to provide a unified theory.
    Nicolaus BJ
    Med Hypotheses; 2005; 65(4):791-6. PubMed ID: 15949901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of radicals from water radiolysis with melanin.
    Sarna T; Pilas B; Land EJ; Truscott TG
    Biochim Biophys Acta; 1986 Aug; 883(1):162-7. PubMed ID: 3015231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The kinetics of ascorbic acid oxidation catalyzed by Cu(II)/H2DCA in the presence of DNA].
    Li PH; Chen QH; Pang YH
    Yao Xue Xue Bao; 1992; 27(2):139-43. PubMed ID: 1414370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.
    Boatright WL
    Food Chem; 2016 Apr; 196():1361-7. PubMed ID: 26593628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanin.
    Riley PA
    Int J Biochem Cell Biol; 1997 Nov; 29(11):1235-9. PubMed ID: 9451820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ascorbic acid metabolism in protection against free radicals: a radiation model.
    Rose RC
    Biochem Biophys Res Commun; 1990 Jun; 169(2):430-6. PubMed ID: 2162665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of ascorbic acid oxidation by cytochrome b(561).
    Njus D; Wigle M; Kelley PM; Kipp BH; Schlegel HB
    Biochemistry; 2001 Oct; 40(39):11905-11. PubMed ID: 11570891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of cytochrome C by ascorbic free radical.
    Paciolla C; De Gara L
    Boll Soc Ital Biol Sper; 1991 Feb; 67(2):137-44. PubMed ID: 1653579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid.
    Lidong W; Yongliang M; Wendi Z; Qiangwei L; Yi Z; Zhanchao Z
    J Hazard Mater; 2013 Aug; 258-259():61-9. PubMed ID: 23692683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transepithelial transport of ascorbic acid by the isolated intact ciliary epithelial bilayer of the rabbit eye.
    Mead A; Sears J; Sears M
    J Ocul Pharmacol Ther; 1996; 12(3):253-8. PubMed ID: 8875331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origin of photo-oxidative stress in the aging eye.
    Glickman RD
    Prog Brain Res; 2001; 131():699-712. PubMed ID: 11420981
    [No Abstract]   [Full Text] [Related]  

  • 40. X-ray microanalysis of melanin granules of retinal pigment epithelium and choroid in hereditary copper deficient mice (macular mice).
    Mishima K; Amemiya T; Takano K
    Exp Eye Res; 1999 Jan; 68(1):59-65. PubMed ID: 9986742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.