These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8225331)
61. New finite difference formulations for general inhomogeneous anisotropic bioelectric problems. Saleheen HI; Ng KT IEEE Trans Biomed Eng; 1997 Sep; 44(9):800-9. PubMed ID: 9282472 [TBL] [Abstract][Full Text] [Related]
62. How electrode size affects the electric potential distribution in cardiac tissue. Patel SG; Roth BJ IEEE Trans Biomed Eng; 2000 Sep; 47(9):1284-7. PubMed ID: 11008431 [TBL] [Abstract][Full Text] [Related]
63. [Biophysical models of the heart electrical activity]. Baum OV; Voloshin VI; Popov LA Biofizika; 2006; 51(6):1069-86. PubMed ID: 17175918 [TBL] [Abstract][Full Text] [Related]
64. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Hooks DA; Trew ML; Caldwell BJ; Sands GB; LeGrice IJ; Smaill BH Circ Res; 2007 Nov; 101(10):e103-12. PubMed ID: 17947797 [TBL] [Abstract][Full Text] [Related]
65. A perturbation solution of the mechanical bidomain model. Punal VM; Roth BJ Biomech Model Mechanobiol; 2012 Sep; 11(7):995-1000. PubMed ID: 22200886 [TBL] [Abstract][Full Text] [Related]
66. Computer simulations of successful defibrillation in decoupled and non-uniform cardiac tissue. Kuijpers NH; Keldermann RH; Arts T; Hilbers PA Europace; 2005 Sep; 7 Suppl 2():166-77. PubMed ID: 16102514 [TBL] [Abstract][Full Text] [Related]
67. An efficient numerical technique for the solution of the monodomain and bidomain equations. Whiteley JP IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318 [TBL] [Abstract][Full Text] [Related]
68. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. Klepfer RN; Johnson CR; Macleod RS IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984 [TBL] [Abstract][Full Text] [Related]
69. The effect of cellular discontinuities on the transient subthreshold response of a one-dimensional cardiac model. Cartee LA; Plonsey R IEEE Trans Biomed Eng; 1992 Mar; 39(3):260-70. PubMed ID: 1555856 [TBL] [Abstract][Full Text] [Related]
70. An evaluation of some assumptions underpinning the bidomain equations of electrophysiology. Whiteley JP Math Med Biol; 2020 May; 37(2):262-302. PubMed ID: 31680135 [TBL] [Abstract][Full Text] [Related]
71. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Whiteley JP; Bishop MJ; Gavaghan DJ Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303 [TBL] [Abstract][Full Text] [Related]
72. Physiology driven adaptivity for the numerical solution of the bidomain equations. Whiteley JP Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825 [TBL] [Abstract][Full Text] [Related]
73. Effective boundary conditions for syncytial tissues. Krassowska W; Neu JC IEEE Trans Biomed Eng; 1994 Feb; 41(2):143-50. PubMed ID: 8026847 [TBL] [Abstract][Full Text] [Related]
74. Modification of a cylindrical bidomain model for cardiac tissue. Trayanova N; Henriquez CS Math Biosci; 1991 Apr; 104(1):59-72. PubMed ID: 1804456 [TBL] [Abstract][Full Text] [Related]
75. The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. Cartee LA; Plonsey R IEEE Trans Biomed Eng; 1992 Jan; 39(1):76-85. PubMed ID: 1572684 [TBL] [Abstract][Full Text] [Related]
76. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model. Henriquez CS; Muzikant AL; Smoak CK J Cardiovasc Electrophysiol; 1996 May; 7(5):424-44. PubMed ID: 8722588 [TBL] [Abstract][Full Text] [Related]
77. Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue. Johnston BM IEEE Trans Biomed Eng; 2016 Jul; 63(7):1525-31. PubMed ID: 26560866 [TBL] [Abstract][Full Text] [Related]
78. Simulation of propagation along a cylindrical bundle of cardiac tissue--I: Mathematical formulation. Henriquez CS; Plonsey R IEEE Trans Biomed Eng; 1990 Sep; 37(9):850-60. PubMed ID: 2227972 [TBL] [Abstract][Full Text] [Related]
79. Influence of the electric axis of stimulation on the induced transmembrane potentials in ellipsoidal bidomain heart. Entcheva E Ann Biomed Eng; 2000 Mar; 28(3):244-52. PubMed ID: 10784089 [TBL] [Abstract][Full Text] [Related]
80. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia? Johnston BM; Johnston PR Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]