These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8225331)
81. Effect of a perfusing bath on the rate of rise of an action potential propagating through a slab of cardiac tissue. Roth BJ Ann Biomed Eng; 1996; 24(6):639-46. PubMed ID: 8923984 [TBL] [Abstract][Full Text] [Related]
82. A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues. Saleheen HI; Ng KT IEEE Trans Biomed Eng; 1998 Jan; 45(1):15-25. PubMed ID: 9444836 [TBL] [Abstract][Full Text] [Related]
83. Interstitial potentials and their change with depth into cardiac tissue. Plonsey R; Barr RC Biophys J; 1987 Apr; 51(4):547-55. PubMed ID: 3580483 [TBL] [Abstract][Full Text] [Related]
84. Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Janssen AM; Potyagaylo D; Dössel O; Oostendorp TF Med Biol Eng Comput; 2018 Jun; 56(6):1013-1025. PubMed ID: 29130137 [TBL] [Abstract][Full Text] [Related]
85. A numerical method for cardiac mechanoelectric simulations. Pathmanathan P; Whiteley JP Ann Biomed Eng; 2009 May; 37(5):860-73. PubMed ID: 19263223 [TBL] [Abstract][Full Text] [Related]
86. Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. Geselowitz DB J Electrocardiol; 1992; 25 Suppl():65-7. PubMed ID: 1297711 [TBL] [Abstract][Full Text] [Related]
87. Approximate analytical solutions of the Bidomain equations for electrical stimulation of cardiac tissue with curving fibers. Roth BJ; Langrill Beaudoin D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051925. PubMed ID: 12786196 [TBL] [Abstract][Full Text] [Related]
88. Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Corrias A; Pathmanathan P; Gavaghan DJ; Buist ML Integr Biol (Camb); 2012 Feb; 4(2):192-201. PubMed ID: 22222297 [TBL] [Abstract][Full Text] [Related]
89. Effect of junctional resistance on source-strength in a linear cable. Plonsey R; Barr RC Ann Biomed Eng; 1985; 13(1):95-100. PubMed ID: 4003873 [TBL] [Abstract][Full Text] [Related]
90. Equivalent sources for the extracellular potentials of single fibers and bundles. Trayanova N Acta Physiol Pharmacol Bulg; 1990; 16(1):3-7. PubMed ID: 2392951 [TBL] [Abstract][Full Text] [Related]
91. Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Roberts SF; Stinstra JG; Henriquez CS Biophys J; 2008 Oct; 95(8):3724-37. PubMed ID: 18641070 [TBL] [Abstract][Full Text] [Related]
92. Potential distribution in three-dimensional periodic myocardium--Part I: Solution with two-scale asymptotic analysis. Krassowska W; Pilkington TC; Ideker RE IEEE Trans Biomed Eng; 1990 Mar; 37(3):252-66. PubMed ID: 2329000 [TBL] [Abstract][Full Text] [Related]
93. Review of mechanisms by which electrical stimulation alters the transmembrane potential. Newton JC; Knisley SB; Zhou X; Pollard AE; Ideker RE J Cardiovasc Electrophysiol; 1999 Feb; 10(2):234-43. PubMed ID: 10090228 [TBL] [Abstract][Full Text] [Related]
94. Nonlinear summation of junction potentials in a three-dimensional syncytium. Poznański RR Ann Biomed Eng; 1993; 21(4):401-5. PubMed ID: 8214824 [TBL] [Abstract][Full Text] [Related]
95. Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. Roth BJ; Wikswo JP IEEE Trans Biomed Eng; 1994 Mar; 41(3):232-40. PubMed ID: 8045575 [TBL] [Abstract][Full Text] [Related]
96. A method for calculation the extracellular potentials from experimentally recorded intracellular potentials of a single muscle fibers. Trayanova N Acta Physiol Pharmacol Bulg; 1988; 14(2):83-91. PubMed ID: 3223294 [TBL] [Abstract][Full Text] [Related]
97. One-dimensional model of cardiac defibrillation. Plonsey R; Barr RC; Witkowski FX Med Biol Eng Comput; 1991 Sep; 29(5):465-9. PubMed ID: 1817207 [TBL] [Abstract][Full Text] [Related]
98. A planar slab bidomain model for cardiac tissue. Henriquez CS; Trayanova N; Plonsey R Ann Biomed Eng; 1990; 18(4):367-76. PubMed ID: 2221506 [TBL] [Abstract][Full Text] [Related]
99. Modelling passive cardiac conductivity during ischaemia. Stinstra JG; Shome S; Hopenfeld B; MacLeod RS Med Biol Eng Comput; 2005 Nov; 43(6):776-82. PubMed ID: 16594306 [TBL] [Abstract][Full Text] [Related]
100. [Highly permeable contacts and the electrical characteristics of normal liver tissue and hepatomas. II. A structural model and calculation of the cell membrane permeability of induced mouse hepatomas]. Sharovskaia IuIu; Mittel'man LA; Smolianinov VV; Chaĭlakhian LM Tsitologiia; 1982 Jan; 24(1):26-34. PubMed ID: 7064228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]