BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8225334)

  • 1. Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model.
    Deng L; Kheirallah I
    IEEE Trans Biomed Eng; 1993 May; 40(5):456-67. PubMed ID: 8225334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved speech processing strategy for cochlear implants based on an active nonlinear filterbank model of the biological cochlea.
    Kim KH; Choi SJ; Kim JH; Kim DH
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):828-36. PubMed ID: 19272890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligibility and listener preference of telephone speech in the presence of babble noise.
    Hall JL; Flanagan JL
    J Acoust Soc Am; 2010 Jan; 127(1):280-5. PubMed ID: 20058974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of noise and noise reduction processing on the operation of the Nucleus-22 cochlear implant processor.
    Weiss MR
    J Rehabil Res Dev; 1993; 30(1):117-28. PubMed ID: 8263822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.
    Shapiro AD; Wang C
    J Acoust Soc Am; 2009 Jul; 126(1):451-9. PubMed ID: 19603902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding frequency modulation to improve cochlear implant performance in noise.
    Nie K; Stickney G; Zeng FG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):64-73. PubMed ID: 15651565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech intelligibility in cochlear implant simulations: Effects of carrier type, interfering noise, and subject experience.
    Whitmal NA; Poissant SF; Freyman RL; Helfer KS
    J Acoust Soc Am; 2007 Oct; 122(4):2376-88. PubMed ID: 17902872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.
    Bai MR; Hsieh PJ; Hur KN
    J Acoust Soc Am; 2009 Feb; 125(2):934-43. PubMed ID: 19206870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of adaptive digital signal processing to speech enhancement for the hearing impaired.
    Chabries DM; Christiansen RW; Brey RH; Robinette MS; Harris RW
    J Rehabil Res Dev; 1987; 24(4):65-74. PubMed ID: 3430391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal envelope compensation for robust phoneme recognition using modulation spectrum.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2010 Dec; 128(6):3769-80. PubMed ID: 21218908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern.
    Zalevsky Z; Beiderman Y; Margalit I; Gingold S; Teicher M; Mico V; Garcia J
    Opt Express; 2009 Nov; 17(24):21566-80. PubMed ID: 19997398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The representation of noise vocoded speech in the auditory nerve of the chinchilla: physiological correlates of the perception of spectrally reduced speech.
    Loebach JL; Wickesberg RE
    Hear Res; 2006 Mar; 213(1-2):130-44. PubMed ID: 16497455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a signal cancellation technique involving impulse response to assess directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2009 Dec; 126(6):3214-26. PubMed ID: 20000935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model.
    Maeda S; Song WJ; Ishii S
    Neural Comput; 2005 Jan; 17(1):115-44. PubMed ID: 15563750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.