These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8225498)

  • 1. Studies on DNA adduction with heterocyclic amines by accelerator mass spectrometry: a new technique for tracing isotope-labelled DNA adduction.
    Turteltaub KW; Vogel JS; Frantz CE; Fultz E
    IARC Sci Publ; 1993; (124):293-301. PubMed ID: 8225498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the DNA adduction and pharmacokinetics of PhIP and MeIOx in rodents at doses approximating human exposure using the technique of accelerator mass spectrometry (AMS) and 32P-postlabeling.
    Turteltaub KW; Vogel JS; Frantz C; Felton JS; McManus M
    Princess Takamatsu Symp; 1995; 23():93-102. PubMed ID: 8844800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attomole detection of 3H in biological samples using accelerator mass spectrometry: application in low-dose, dual-isotope tracer studies in conjunction with 14C accelerator mass spectrometry.
    Dingley KH; Roberts ML; Velsko CA; Turteltaub KW
    Chem Res Toxicol; 1998 Oct; 11(10):1217-22. PubMed ID: 9778319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA.
    Turteltaub KW; Felton JS; Gledhill BL; Vogel JS; Southon JR; Caffee MW; Finkel RC; Nelson DE; Proctor ID; Davis JC
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5288-92. PubMed ID: 2371271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-response studies of MeIQx in rat liver and liver DNA at low doses.
    Frantz CE; Bangerter C; Fultz E; Mayer KM; Vogel JS; Turteltaub KW
    Carcinogenesis; 1995 Feb; 16(2):367-73. PubMed ID: 7859370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.
    Dingley KH; Ubick EA; Vogel JS; Haack KW
    Methods Mol Biol; 2005; 291():21-7. PubMed ID: 15502208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerator mass spectrometry in pharmaceutical research and development--a new ultrasensitive analytical method for isotope measurement.
    Garner RC
    Curr Drug Metab; 2000 Sep; 1(2):205-13. PubMed ID: 11465084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator mass spectrometry.
    Hellborg R; Skog G
    Mass Spectrom Rev; 2008; 27(5):398-427. PubMed ID: 18470926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA adducts in model systems and humans.
    Turteltaub KW; Frantz CE; Creek MR; Vogel JS; Shen N; Fultz E
    J Cell Biochem Suppl; 1993; 17F():138-48. PubMed ID: 8412185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of AFB(1)-macromolecular adducts in rats and humans at dietary levels of exposure.
    Cupid BC; Lightfoot TJ; Russell D; Gant SJ; Turner PC; Dingley KH; Curtis KD; Leveson SH; Turteltaub KW; Garner RC
    Food Chem Toxicol; 2004 Apr; 42(4):559-69. PubMed ID: 15019179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of accelerator mass spectrometry for pharmacological and toxicological research.
    Brown K; Tompkins EM; White IN
    Mass Spectrom Rev; 2006; 25(1):127-45. PubMed ID: 16059873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-level biological dosimetry of heterocyclic amine carcinogens isolated from cooked food.
    Turteltaub KW; Vogel JS; Frantz C; Buonarati MH; Felton JS
    Environ Health Perspect; 1993 Mar; 99():183-6. PubMed ID: 8319619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Techniques: the application of accelerator mass spectrometry to pharmacology and toxicology.
    White IN; Brown K
    Trends Pharmacol Sci; 2004 Aug; 25(8):442-7. PubMed ID: 15276714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA adducts: mass spectrometry methods and future prospects.
    Farmer PB; Brown K; Tompkins E; Emms VL; Jones DJ; Singh R; Phillips DH
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):293-301. PubMed ID: 15990134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in biomedical applications of accelerator mass spectrometry.
    Hah SS; Henderson PT; Turteltaub KW
    J Biomed Sci; 2009 Jun; 16(1):54. PubMed ID: 19534792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A validation study comparing accelerator MS and liquid scintillation counting for analysis of 14C-labelled drugs in plasma, urine and faecal extracts.
    Garner RC; Barker J; Flavell C; Garner JV; Whattam M; Young GC; Cussans N; Jezequel S; Leong D
    J Pharm Biomed Anal; 2000 Dec; 24(2):197-209. PubMed ID: 11130199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.
    Barker J; Garner RC
    Rapid Commun Mass Spectrom; 1999; 13(4):285-93. PubMed ID: 10097404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique.
    Young G; Ellis W; Ayrton J; Hussey E; Adamkiewicz B
    Xenobiotica; 2001; 31(8-9):619-32. PubMed ID: 11569529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitating isotopic molecular labels with accelerator mass spectrometry.
    Vogel JS; Love AH
    Methods Enzymol; 2005; 402():402-22. PubMed ID: 16401517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerator mass spectrometry for biomedical research.
    Brown K; Dingley KH; Turteltaub KW
    Methods Enzymol; 2005; 402():423-43. PubMed ID: 16401518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.