These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8226660)

  • 1. Conditional synthesis and utilization of 1,5-anhydroglucitol in Escherichia coli.
    Shiga Y; Mizuno H; Akanuma H
    J Bacteriol; 1993 Nov; 175(22):7138-41. PubMed ID: 8226660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli phosphorylates 1,5-Anhydroglucitol and releases 1,5-Anhydroglucitol 6-phosphate when glucose is absent in the medium.
    Shiga Y; Kametani S; Mizuno H; Akanuma H
    J Biochem; 1996 Jan; 119(1):173-9. PubMed ID: 8907193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of 1,5-anhydro-D-glucitol from glucose in rat hepatoma cells.
    Suzuki M; Mizuno H; Akanuma Y; Akanuma H
    J Biochem; 1994 Jan; 115(1):87-92. PubMed ID: 8188642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and accumulation of 1,5-anhydro-D-glucitol in the human erythroleukemia cell line K-562.
    Yamanouchi T; Tachibana Y; Sekino N; Akanuma H; Akaoka I; Miyashita H
    J Biol Chem; 1994 Apr; 269(13):9664-8. PubMed ID: 8144554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of bistability in glucose metabolism of Escherichia coli ML 30 chemostat cultures by cyclic AMP.
    Müller PJ; Römer W
    Z Allg Mikrobiol; 1982; 22(3):211-4. PubMed ID: 6287745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of 1,5-anhydro-D-glucitol in mammalian cells.
    Mizuno H; Morita M; Akanuma H
    J Biochem; 1995 Aug; 118(2):411-7. PubMed ID: 8543578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-dependent uptake of 1,5-anhydro-D-glucitol via the transport systems for D-glucose and D-mannose in the kidney epithelial cell line, LLC-PK1.
    Saito H; Ohtomo T; Inui K
    Nihon Jinzo Gakkai Shi; 1996 Oct; 38(10):435-40. PubMed ID: 8940824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some biochemical effects of 4-deoxy-4-fluoro-D-glucose on Escherichia coli.
    Taylor NF; Louie LY
    Can J Biochem; 1977 Aug; 55(8):911-5. PubMed ID: 196727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,5-Anhydroglucitol promotes glycogenolysis in Escherichia coli.
    Shiga Y; Kametani S; Kadokura T; Akanuma H
    J Biochem; 1999 Jan; 125(1):166-72. PubMed ID: 9880813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of 1,5-anhydro-D-glucitol into insulinoma cells by a glucose-sensitive transport system.
    Yamanouchi T; Ogata N; Yoshimura T; Inoue T; Ogata E; Kawasaki T; Kashiwabara A; Muraoka H
    Biochim Biophys Acta; 2000 May; 1474(3):291-8. PubMed ID: 10779680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body.
    Yamanouchi T; Tachibana Y; Akanuma H; Minoda S; Shinohara T; Moromizato H; Miyashita H; Akaoka I
    Am J Physiol; 1992 Aug; 263(2 Pt 1):E268-73. PubMed ID: 1514606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of rates of adenosine 3':5'-cyclic monophosphate synthesis in intact Escherichia coli B.
    Peterkofsky A; Gazdar C
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2149-52. PubMed ID: 4352975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,5-Anhydro-D-glucitol--a novel type of sugar in the human organism.
    Pitkänen E
    Scand J Clin Lab Invest Suppl; 1990; 201():55-62. PubMed ID: 2244184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli.
    Okada T; Ueyama K; Niiya S; Kanazawa H; Futai M; Tsuchiya T
    J Bacteriol; 1981 Jun; 146(3):1030-7. PubMed ID: 6263854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine 3':5'-cyclic monophosphate and catabolite repression in Escherichia coli.
    Moses V; Sharp PB
    Biochem J; 1970 Jul; 118(3):481-9. PubMed ID: 4319543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the regulation of bacterial glycogen synthesis by cyclic AMP.
    Dietzler DN; Leckie MP; Sternheim WL; Taxman TL; Ungar JM; Porter SE
    Biochem Biophys Res Commun; 1977 Aug; 77(4):1468-77. PubMed ID: 197961
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of cyclic AMP on anaerobic growth of Escherichia coli.
    Patrick JM; Dobrogosz WJ
    Biochem Biophys Res Commun; 1973 Sep; 54(2):555-61. PubMed ID: 4356973
    [No Abstract]   [Full Text] [Related]  

  • 18. Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein.
    Shaikh AS; Tang YJ; Mukhopadhyay A; Martín HG; Gin J; Benke PI; Keasling JD
    Biotechnol Prog; 2010; 26(1):52-6. PubMed ID: 19899123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of gluconate by Escherichia coli. A role of adenosine 3':5'-cyclic monophosphate in the induction of gluconate catabolism.
    Bächi B; Kornberg HL
    Biochem J; 1975 Jul; 150(1):123-8. PubMed ID: 173298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic nucleotides in bacteria.
    Peterkofsky A
    Adv Cyclic Nucleotide Res; 1976; 7():1-48. PubMed ID: 188312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.