These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8226660)

  • 41. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli.
    Lange R; Barth M; Hengge-Aronis R
    J Bacteriol; 1993 Dec; 175(24):7910-7. PubMed ID: 8253679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of the crr-gene in glucose uptake by Escherichia coli.
    Jones-Mortimer MC; Kornberg HL; Maltby R; Watts PD
    FEBS Lett; 1977 Feb; 74(1):17-9. PubMed ID: 320045
    [No Abstract]   [Full Text] [Related]  

  • 44. Polyglucose content in the cell and the rate of glucose consumption during synchronous growth of Escherichia coli.
    Planutis KS; Planutiene MV; Lazareva AV; Sel'kov EE; Evtodienko YuV
    Biochem Biophys Res Commun; 1982 Nov; 109(2):583-7. PubMed ID: 6295403
    [No Abstract]   [Full Text] [Related]  

  • 45. Selective effects of fatty acids upon cell growth and metabolic regulation.
    Lands WE; Sacks RW; Sauter J; Gunstone F
    Lipids; 1978 Dec; 13(12):878-86. PubMed ID: 220483
    [No Abstract]   [Full Text] [Related]  

  • 46. Simple filter paper procedure for estimation of glucose uptake via group translocation by whole-cell suspensions of bacteria.
    Germaine GR; Tellefson LM
    Appl Environ Microbiol; 1981 Mar; 41(3):837-9. PubMed ID: 7013712
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of Novel Low-Molecular-Mass Oil-gelling Agents: Synthesis and Physical Properties of 1,5-Anhydro-D-glucitol and 1,5-Anhydro-D-mannitol Protected with Saturated Linear Fatty Acids.
    Kajiki T; Komba S
    J Appl Glycosci (1999); 2019; 66(3):103-112. PubMed ID: 34429688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Research on consistency of different measurement methods for saliva 1,5-anhydroglucitol].
    Jian CH; Zhao AH; Ma XJ; Lu W; Zhu W; Wang YF; Zhou J; Bao YQ
    Zhonghua Yi Xue Za Zhi; 2020 Nov; 100(42):3291-3295. PubMed ID: 33202489
    [No Abstract]   [Full Text] [Related]  

  • 49. Maintenance of Escherichia coli and the assimilation of glucose.
    McGrew SB; Mallette MF
    Nature; 1965 Dec; 208(5015):1096-7. PubMed ID: 5331548
    [No Abstract]   [Full Text] [Related]  

  • 50. Catabolism of 1,5-anhydro-D-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-D-fructose reductase and its application in sugar analysis and rare sugar synthesis.
    Kühn A; Yu S; Giffhorn F
    Appl Environ Microbiol; 2006 Feb; 72(2):1248-57. PubMed ID: 16461673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel NAD-dependent dehydrogenase, highly specific for 1,5-anhydro-D-glucitol, from Trichoderma longibrachiatum strain 11-3.
    Yoshida N; Uchida E; Katsuragi T; Tani Y
    Appl Environ Microbiol; 2003 May; 69(5):2603-7. PubMed ID: 12732527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14.
    Srinivasan S; Ostling J; Charlton T; de Nys R; Takayama K; Kjelleberg S
    J Bacteriol; 1998 Jan; 180(2):201-9. PubMed ID: 9440506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Escherichia coli phosphorylates 1,5-Anhydroglucitol and releases 1,5-Anhydroglucitol 6-phosphate when glucose is absent in the medium.
    Shiga Y; Kametani S; Mizuno H; Akanuma H
    J Biochem; 1996 Jan; 119(1):173-9. PubMed ID: 8907193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of 1,5-anhydro-D-glucitol from glucose in rat hepatoma cells.
    Suzuki M; Mizuno H; Akanuma Y; Akanuma H
    J Biochem; 1994 Jan; 115(1):87-92. PubMed ID: 8188642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport and accumulation of 1,5-anhydro-D-glucitol in the human erythroleukemia cell line K-562.
    Yamanouchi T; Tachibana Y; Sekino N; Akanuma H; Akaoka I; Miyashita H
    J Biol Chem; 1994 Apr; 269(13):9664-8. PubMed ID: 8144554
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of bistability in glucose metabolism of Escherichia coli ML 30 chemostat cultures by cyclic AMP.
    Müller PJ; Römer W
    Z Allg Mikrobiol; 1982; 22(3):211-4. PubMed ID: 6287745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conditional synthesis and utilization of 1,5-anhydroglucitol in Escherichia coli.
    Shiga Y; Mizuno H; Akanuma H
    J Bacteriol; 1993 Nov; 175(22):7138-41. PubMed ID: 8226660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sugar Alcohols. VI: Utilization of Sugar Alcohols and Their Anhydrides by Various Microörganisms.
    Dozois KP; Carr CJ; Krantz JC; Hachtel F; Beck FF
    J Bacteriol; 1936 Nov; 32(5):499-503. PubMed ID: 16559968
    [No Abstract]   [Full Text] [Related]  

  • 59. Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients.
    Akanuma H; Ogawa K; Lee Y; Akanuma Y
    J Biochem; 1981 Jul; 90(1):157-62. PubMed ID: 7287673
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.