These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8227032)

  • 1. Interaction of bacterial luciferase with aldehyde substrates and inhibitors.
    Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopped-flow kinetic analysis of the bacterial luciferase reaction.
    Abu-Soud H; Mullins LS; Baldwin TO; Raushel FM
    Biochemistry; 1992 Apr; 31(15):3807-13. PubMed ID: 1567836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site.
    Holzman TF; Baldwin TO
    Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme.
    Lee J; Murphy CL
    Biochemistry; 1975 May; 14(10):2259-68. PubMed ID: 807236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates.
    Ashizawa N; Nakamura T; Watanabe T
    J Biochem; 1977 Apr; 81(4):1057-62. PubMed ID: 881410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical.
    Kurfürst M; Ghisla S; Presswood R; Hastings JW
    Eur J Biochem; 1982 Apr; 123(2):355-61. PubMed ID: 6978813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives.
    Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM
    J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic fluorescence properties of bacterial luciferase intermediates.
    Lee J; O'Kane DJ; Gibson BG
    Biochemistry; 1988 Jun; 27(13):4862-70. PubMed ID: 3167018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active center studies on bacterial luciferase: modification of the enzyme with 2,4-dinitrofluorobenzene.
    Welches WR; Baldwin TO
    Biochemistry; 1981 Feb; 20(3):512-7. PubMed ID: 6971121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase.
    Jockers R; Ziegler T; Schmid RD
    J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity labeling of the aldehyde site of bacterial luciferase.
    Fried A; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10754-9. PubMed ID: 6547953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction.
    Watanabe T; Nakamura T
    J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity and stability of the luciferase--flavin intermediate.
    Becvar JE; Tu SC; Hastings JW
    Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of bacterial luciferases by affinity chromatography on 2,2-diphenylpropylamine-Sepharose: phosphate-mediated binding to an immobilized substrate analogue.
    Holzman TF; Baldwin TO
    Biochemistry; 1982 Nov; 21(24):6194-201. PubMed ID: 6983889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.