These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8227259)

  • 1. Application of high-performance liquid chromatography for recognition of covalent nucleic acid modification with anticancer drugs.
    Cummings J; French RC; Smyth JF
    J Chromatogr; 1993 Aug; 618(1-2):251-76. PubMed ID: 8227259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of covalent binding to intact DNA, RNA, and oligonucleotides by intercalating anticancer drugs using high-performance liquid chromatography. Studies with doxorubicin and NADPH cytochrome P-450 reductase.
    Cummings J; Bartoszek A; Smyth JF
    Anal Biochem; 1991 Apr; 194(1):146-55. PubMed ID: 1714250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of nucleic acids by on-line liquid chromatography-mass spectrometry.
    Huber CG; Oberacher H
    Mass Spectrom Rev; 2001; 20(5):310-43. PubMed ID: 11948655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent binding of elliptinium acetate (NSC 264137) to nucleic acids of L1210 cells in culture.
    Dugue B; Auclair C; Meunier B
    Cancer Res; 1986 Aug; 46(8):3828-33. PubMed ID: 2425935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postcolumn nucleic acid intercalation for the fluorescent detection of nucleic acids using ion pair reverse phase high-performance liquid chromatography.
    Dickman MJ
    Anal Biochem; 2007 Jan; 360(2):282-7. PubMed ID: 17084375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic and chromatographic separation methods used to reveal interstrand crosslinking of nucleic acids.
    Hartley JA; Souhami RL; Berardini MD
    J Chromatogr; 1993 Aug; 618(1-2):277-88. PubMed ID: 8227260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem mass spectrometry for characterization of covalent adducts of DNA with anticancer therapeutics.
    Silvestri C; Brodbelt JS
    Mass Spectrom Rev; 2013; 32(4):247-66. PubMed ID: 23150278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of [3H]benzo(a)pyrene to natural and synthetic nucleic acids in a subcellular microsomal system.
    Pietropaolo C; Weinstein IB
    Cancer Res; 1975 Aug; 35(8):2191-8. PubMed ID: 238738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput analysis of nucleic acid modification reactions using ion-pair reverse-phase high-performance liquid chromatography.
    Dickman MJ; Matin MM; Hornby DP
    Anal Biochem; 2002 Feb; 301(2):290-7. PubMed ID: 11814299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of DNA with chemically or enzymatically activated mitomycin C: isolation and structure of the major covalent adduct.
    Tomasz M; Chowdary D; Lipman R; Shimotakahara S; Veiro D; Walker V; Verdine GL
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):6702-6. PubMed ID: 3018744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation.
    Kellersberger KA; Yu E; Kruppa GH; Young MM; Fabris D
    Anal Chem; 2004 May; 76(9):2438-45. PubMed ID: 15117181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines: application to the design of antitumor drugs for resistant cancer.
    Taatjes DJ; Fenick DJ; Gaudiano G; Koch TH
    Curr Pharm Des; 1998 Jun; 4(3):203-18. PubMed ID: 10197040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide ions as luminescent chromophores for the liquid chromatographic detection of polynucleotides and nucleic acids.
    Wenzel TJ; Collette LM
    J Chromatogr; 1988 Feb; 436(2):299-307. PubMed ID: 3356764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention modification of nucleic acid constituents in reversed-phase high-performance liquid chromatography.
    Ramsey RS; Chan VW; Dittmar BM; Row KH
    J Chromatogr; 1989 May; 468():167-79. PubMed ID: 2732287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A set of procedures for resolving purine compounds by reversed-phase high performance liquid chromatography: application to the study of purine nucleotide and nucleic acid metabolism.
    Rotllán P; Liras A; Llorente P
    Anal Biochem; 1986 Dec; 159(2):377-85. PubMed ID: 3826623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further study of hydroxyapatite high-performance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency.
    Kawasaki T; Ikeda K; Takahashi S; Kuboki Y
    Eur J Biochem; 1986 Mar; 155(2):249-57. PubMed ID: 3007123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods used for analyses of "environmentally" damaged nucleic acids.
    Frenkel K; Klein CB
    J Chromatogr; 1993 Aug; 618(1-2):289-314. PubMed ID: 8227261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatographic profiling of nucleic acid components in physiological samples.
    Simpson RC; Brown PR
    J Chromatogr; 1986 Jun; 379():269-311. PubMed ID: 3525591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid high-performance liquid chromatography of nucleic acids with polystyrene-based micropellicular anion exchangers.
    Maa YF; Lin SC; Horváth C; Yang UC; Crothers DM
    J Chromatogr; 1990 May; 508(1):61-73. PubMed ID: 2166064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.