These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8227299)

  • 41. In vitro motility of skeletal muscle myosin and its proteolytic fragments.
    Takiguchi K; Hayashi H; Kurimoto E; Higashi-Fujime S
    J Biochem; 1990 May; 107(5):671-9. PubMed ID: 2144521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A protein friction model of the actin sliding movement generated by myosin in mixtures of MgATP and MgGTP in vitro.
    Imafuku Y; Emoto Y; Tawada K
    J Theor Biol; 1999 Aug; 199(4):359-70. PubMed ID: 10441454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay.
    Suzuki N; Miyata H; Ishiwata S; Kinosita K
    Biophys J; 1996 Jan; 70(1):401-8. PubMed ID: 8770216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of fluctuation in step size on actin-myosin sliding motion.
    Kagawa Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011923. PubMed ID: 17358200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium-triggered movement of regulated actin in vitro. A fluorescence microscopy study.
    Honda H; Asakura S
    J Mol Biol; 1989 Feb; 205(4):677-83. PubMed ID: 2522555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Movement of myosin-coated beads on oriented filaments reconstituted from purified actin.
    Spudich JA; Kron SJ; Sheetz MP
    Nature; 1985 Jun 13-19; 315(6020):584-6. PubMed ID: 3925346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acting on actin: the electric motility assay.
    Riveline D; Ott A; Jülicher F; Winkelmann DA; Cardoso O; Lacapère JJ; Magnúsdóttir S; Viovy JL; Gorre-Talini L; Prost J
    Eur Biophys J; 1998; 27(4):403-8. PubMed ID: 9691469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin.
    Kim E; Bobkova E; Miller CJ; Orlova A; Hegyi G; Egelman EH; Muhlrad A; Reisler E
    Biochemistry; 1998 Dec; 37(51):17801-9. PubMed ID: 9922146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles.
    Chen Y; Guzik S; Sumner JP; Moreland J; Koretsky AP
    Nanotechnology; 2011 Feb; 22(6):065101. PubMed ID: 21212476
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments.
    Sellers JR; Spudich JA; Sheetz MP
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1897-902. PubMed ID: 3840488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Myosin movement in vitro: a quantitative assay using oriented actin cables from Nitella.
    Sheetz MP; Block SM; Spudich JA
    Methods Enzymol; 1986; 134():531-44. PubMed ID: 3821577
    [No Abstract]   [Full Text] [Related]  

  • 52. In vitro actin filament sliding velocities produced by mixtures of different types of myosin.
    Cuda G; Pate E; Cooke R; Sellers JR
    Biophys J; 1997 Apr; 72(4):1767-79. PubMed ID: 9083681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Actin-based motility in the net slime mould Labyrinthula: evidence for the role of myosin in gliding movement.
    Preston TM; King CA
    J Eukaryot Microbiol; 2005; 52(6):461-75. PubMed ID: 16313437
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The movement of actin-myosin biomolecular linear motor under AC electric fields: an experimental study.
    Lee Y; Famouri P
    J Colloid Interface Sci; 2013 Mar; 394():312-8. PubMed ID: 23374431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smooth, cardiac and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in vitro.
    Harris DE; Work SS; Wright RK; Alpert NR; Warshaw DM
    J Muscle Res Cell Motil; 1994 Feb; 15(1):11-9. PubMed ID: 8182105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel regulatory effect of myosin light chain kinase from smooth muscle on the ATP-dependent interaction between actin and myosin.
    Kohama K; Okagaki T; Hayakawa K; Lin Y; Ishikawa R; Shimmen T; Inoue A
    Biochem Biophys Res Commun; 1992 May; 184(3):1204-11. PubMed ID: 1534225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Cardiac Myosin-Binding Protein C on Tropomyosin Regulation of Actin-Myosin Interaction Using In Vitro Motility Assay.
    Shchepkin DV; Kopylova GV; Nikitina LV
    Bull Exp Biol Med; 2016 Nov; 162(1):45-47. PubMed ID: 27878725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Movement of myosin fragments in vitro: domains involved in force production.
    Hynes TR; Block SM; White BT; Spudich JA
    Cell; 1987 Mar; 48(6):953-63. PubMed ID: 3548997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap.
    Guilford WH; Dupuis DE; Kennedy G; Wu J; Patlak JB; Warshaw DM
    Biophys J; 1997 Mar; 72(3):1006-21. PubMed ID: 9138552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.