These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 822794)

  • 1. Uptake and incorporation of pyrimidines in Euglena gracilis.
    Wasternack CH
    Arch Microbiol; 1976 Aug; 109(1-2):167-74. PubMed ID: 822794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentation of uracil in Euglena gracilis.
    Wasternack CH
    Mol Cell Biol; 1983 Apr; 3(4):613-22. PubMed ID: 6406837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of purine, pyrimidine bases and nucleosides in Candida albicans, a pathogenic yeast.
    Rao TV; Verma RS; Prasad R
    Biochem Int; 1983 Mar; 6(3):409-17. PubMed ID: 6383386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiamin uptake in Euglena gracilis.
    Shigeoka S; Onishi T; Maeda K; Nakano Y; Kitaoka S
    Biochim Biophys Acta; 1987 Jul; 929(3):247-52. PubMed ID: 3111544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrimidine-degrading enzymes. Purification and properties of beta-ureidopropionase of Euglena gracilis.
    Wasternack C; Lippmann G; Reinbotte H
    Biochim Biophys Acta; 1979 Oct; 570(2):341-51. PubMed ID: 115499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Half-life of cytoplasmic rRNA and tRNA, of plastid rRNA and of uridine nucleotides in heterotrophically and photoorganotrophically grown cells of Euglena gracilis and its apoplastic mutant W3BUL.
    Karnahl U; Wasternack C
    Int J Biochem; 1992 Mar; 24(3):493-7. PubMed ID: 1551462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of pyrimidine bases and nucleosides in Neisseria meningitidis.
    Jyssum S; Jyssum K
    J Bacteriol; 1979 May; 138(2):320-3. PubMed ID: 108255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cycloheximide on membrane transport in Euglena. A comparative study with nigericin.
    Evans WR
    J Biol Chem; 1971 Oct; 246(20):6144-51. PubMed ID: 5001786
    [No Abstract]   [Full Text] [Related]  

  • 9. Uptake of selected pyrimidines by axenically grown Entamoeba histolytica.
    Booden T; Albach RA; Boonlayangoor P
    Arch Invest Med (Mex); 1978; 9 Suppl 1():133-40. PubMed ID: 211944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferredoxin biosynthesis in Euglena gracilis.
    Matson RS; Kimura T
    Biochim Biophys Acta; 1976 Aug; 442(1):76-87. PubMed ID: 821536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrimidine scavenging by Mycobacterium leprae.
    Wheeler PR
    FEMS Microbiol Lett; 1989 Jan; 48(2):179-84. PubMed ID: 2656380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of polypeptides in Euglena gracilis which are synthesized in a circadian manner.
    Künne A; Pistorius E; de Groot E
    Eur J Cell Biol; 1997 Jun; 73(2):175-81. PubMed ID: 9208231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd2+ transport and storage in the chloroplast of Euglena gracilis.
    Mendoza-Cózatl DG; Moreno-Sánchez R
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):88-97. PubMed ID: 15620368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of three distinct pyrimide transport systems in yeast. Evidence for distinct energy coupling.
    Losson R; Jund R; Chevallier MR
    Biochim Biophys Acta; 1978 Nov; 513(2):296-300. PubMed ID: 152649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of cobalamin by Euglena mitochondria.
    Watanabe F; Tamura Y; Stupperich E; Nakano Y
    J Biochem; 1993 Dec; 114(6):793-9. PubMed ID: 8138534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nalidixic acid, chloramphenicol, cycloheximide, and anisomycin on structure and development of plastids and mitochondria in greening Euglena gracilis.
    Neumann D; Parthier B
    Exp Cell Res; 1973 Oct; 81(2):255-68. PubMed ID: 4202355
    [No Abstract]   [Full Text] [Related]  

  • 18. A possible ribosomal-directed regulatory system in Euglena gracilis. Chlorophyll synthesis.
    Perl M
    Biochem J; 1972 Dec; 130(3):813-8. PubMed ID: 4198358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic replication of DNA and changes in mitochondrial morphology during the cell cycle of Euglena gracilis (Z).
    Calvayrac R; Butow RA; Lefort-Tran M
    Exp Cell Res; 1972; 71(2):422-32. PubMed ID: 4625652
    [No Abstract]   [Full Text] [Related]  

  • 20. Polypeptides of chloroplastic and cytoplastic origin required for development of photosystem II activity, and chlorophyll-protein complexes, in Euglena gracilis Z chloroplast membranes.
    Gurevitz M; Kratz H; Ohad I
    Biochim Biophys Acta; 1977 Sep; 461(3):475-88. PubMed ID: 409433
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.