These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8228284)

  • 1. Measurement of kinetic binding constants of viral antibodies using a new biosensor technology.
    Pellequer JL; Van Regenmortel MH
    J Immunol Methods; 1993 Nov; 166(1):133-43. PubMed ID: 8228284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal antipeptide antibodies: affinity and kinetic rate constants measured for the peptide and the cognate protein using a biosensor technology.
    Zeder-Lutz G; Altschuh D; Geysen HM; Trifilieff E; Sommermeyer G; Van Regenmortel MH
    Mol Immunol; 1993 Feb; 30(2):145-55. PubMed ID: 7679185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of biosensors to characterize recombinant proteins.
    Van Regenmortel MH
    Dev Biol Stand; 1994; 83():143-51. PubMed ID: 7883088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods.
    O'Shannessy DJ; Brigham-Burke M; Soneson KK; Hensley P; Brooks I
    Anal Biochem; 1993 Aug; 212(2):457-68. PubMed ID: 8214588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of relative binding affinity of influenza virus N9 sialidases with the Fab fragment of monoclonal antibody NC41 using biosensor technology.
    Gruen LC; Kortt AA; Nice E
    Eur J Biochem; 1993 Oct; 217(1):319-25. PubMed ID: 8223570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the interaction between a synthetic peptide of influenza virus hemagglutinin and monoclonal antibodies using an optical biosensor.
    Nice EC; McInerney TL; Jackson DC
    Mol Immunol; 1996; 33(7-8):659-70. PubMed ID: 8760278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of viral epitopes with conformationally specific monoclonal antibodies using biosensor technology.
    Dubs MC; Altschuh D; Van Regenmortel MH
    J Chromatogr; 1992 Apr; 597(1-2):391-6. PubMed ID: 1381370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance.
    Altschuh D; Dubs MC; Weiss E; Zeder-Lutz G; Van Regenmortel MH
    Biochemistry; 1992 Jul; 31(27):6298-304. PubMed ID: 1627568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of binding of monoclonal antibody to a malarial peptide by surface plasmon resonance biosensor and integrated rate equations.
    Wohlhueter RM; Parekh K; Udhayakumar V; Fang S; Lal AA
    J Immunol; 1994 Jul; 153(1):181-9. PubMed ID: 8207235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and functional mapping of viral epitopes using biosensor technology.
    Saunal H; Van Regenmortel MH
    Virology; 1995 Nov; 213(2):462-71. PubMed ID: 7491771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitope analysis using kinetic measurements of antibody binding to synthetic peptides presenting single amino acid substitutions.
    Zeder-Lutz G; Altschuh D; Denery-Papini S; Briand JP; Tribbick G; Van Regenmortel MH
    J Mol Recognit; 1993 Jun; 6(2):71-9. PubMed ID: 7508237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct kinetic assay of interactions between small peptides and immobilized antibodies using a surface plasmon resonance biosensor.
    Gomes P; Andreu D
    J Immunol Methods; 2002 Jan; 259(1-2):217-30. PubMed ID: 11730856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time analysis of antibody-antigen reaction kinetics.
    Malmborg AC; Michaëlsson A; Ohlin M; Jansson B; Borrebaeck CA
    Scand J Immunol; 1992 Jun; 35(6):643-50. PubMed ID: 1376487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology.
    O'Shannessy DJ; Winzor DJ
    Anal Biochem; 1996 May; 236(2):275-83. PubMed ID: 8660505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of viral conformational epitopes using biosensor measurements.
    Saunal H; Van Regenmortel MH
    J Immunol Methods; 1995 Jun; 183(1):33-41. PubMed ID: 7602137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpolation method for accurate affinity ranking of arrayed ligand-analyte interactions.
    Schasfoort RB; Andree KC; van der Velde N; van der Kooi A; Stojanović I; Terstappen LW
    Anal Biochem; 2016 May; 500():21-3. PubMed ID: 26878776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of affinity of viral monoclonal antibodies by ELISA titration of free antibody in equilibrium mixtures.
    Azimzadeh A; Van Regenmortel MH
    J Immunol Methods; 1991 Aug; 141(2):199-208. PubMed ID: 1880426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of affinity of viral monoclonal antibodies using Fab'-peroxidase conjugate. Influence of antibody concentration on apparent affinity.
    Azimzadeh A; Weiss E; Van Regenmortel MH
    Mol Immunol; 1992 May; 29(5):601-8. PubMed ID: 1584228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative sensitivity of different ELISA methods for detecting monoclonal antibodies to viruses.
    Al Moudallal Z; Altschuh D; Briand JP; Van Regenmortel MH
    Dev Biol Stand; 1984; 57():35-40. PubMed ID: 6396130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of the interaction between the monoclonal antibody A33 and its colonic epithelial antigen by the use of an optical biosensor. A comparison of immobilisation strategies.
    Catimel B; Nerrie M; Lee FT; Scott AM; Ritter G; Welt S; Old LJ; Burgess AW; Nice EC
    J Chromatogr A; 1997 Jul; 776(1):15-30. PubMed ID: 9286074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.