These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 822897)

  • 1. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 4. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A; Mansurova SE; Tsydendambaev VD; Kulaev IS
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation.
    Nishikawa K; Hosoi K; Suzuki J; Yoshimura S; Horio T
    J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266
    [No Abstract]   [Full Text] [Related]  

  • 6. Competition between Pi and pH indicators in photosynthetic ATP formation in chromatophores of Rhodospirillum rubrum.
    Hosoi K; Yoshimura S; Soe G; Kakuno T; Horio T
    J Biochem; 1973 Dec; 74(6):1275-8. PubMed ID: 4205462
    [No Abstract]   [Full Text] [Related]  

  • 7. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores.
    Vallejos RH; Lescano WI; Lucero HA
    Arch Biochem Biophys; 1978 Oct; 190(2):578-84. PubMed ID: 102254
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interaction of redox mediators with chromatophores of the photosynthetic bacterium Rhodospirillum rubrum].
    Sled' VD; Verkhovskiĭ MI; Shinkarev VP; Mulkidzhanian AIa; Grishanova NP
    Mol Biol (Mosk); 1983; 17(1):33-41. PubMed ID: 6408397
    [No Abstract]   [Full Text] [Related]  

  • 10. PPase, ATPase, and photophosphorylation in chromatophores of Rhodospirillum rubrum: inactivation by phospholipase A; reconstitution by phospholipids.
    Klemme B; Klemme JH; San Pietro A
    Arch Biochem Biophys; 1971 May; 144(1):339-42. PubMed ID: 4256089
    [No Abstract]   [Full Text] [Related]  

  • 11. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reversible effect of intensive light on photobiochemical properties of Rhodospirillum rubrum chromatophores].
    Pakshina EV; Lebedov NN; Shaposhnikova MG; Krasnovskiĭ AA
    Biokhimiia; 1982 Apr; 47(4):534-9. PubMed ID: 6805518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores.
    Gromet-Elhanan Z
    Eur J Biochem; 1972 Jan; 25(1):84-8. PubMed ID: 4623434
    [No Abstract]   [Full Text] [Related]  

  • 14. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields.
    Leiser M; Gromet-Elhanan Z
    J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophosphorylation in presence and absence of added adenosine diphosphate in chromatophores from Rhodospirillum rubrum.
    Horio T; von Stedingk LV; Baltscheffsky H
    Acta Chem Scand; 1966; 20(1):1-10. PubMed ID: 5933524
    [No Abstract]   [Full Text] [Related]  

  • 16. [Application of polarography to studies on redox systems in bio-membranes: especially on photosynthetic electron transport system in chromatophore membrane from photosynthetic bacterium (author's transl)].
    Erabi T; Tanaka M; Yamashita J; Horio T
    Tanpakushitsu Kakusan Koso; 1979; 24(5):696-708. PubMed ID: 112648
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 18. Binding and reaction studies with adenine nucleotides on purified coupling factor from Rhodospirillum rubrum.
    Hofmann ME; Bachofen R
    J Bioenerg Biomembr; 1977 Dec; 9(6):349-61. PubMed ID: 18265745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional organization of the electron transport chain of Rhodospirillum rubrum chromatophores in the absence of an exogenous electron donor].
    Ratynĭ AI; Riznichenko GIu; Chamorovskiĭ SK; Vorob'eva TN; Pyt'eva NF
    Biofizika; 1979; 24(4):671-5. PubMed ID: 113038
    [No Abstract]   [Full Text] [Related]  

  • 20. Bound nucleotides and phosphorylation in Rhodospirillum rubrum.
    Harris DA; Baltscheffsky M
    Biochem Biophys Res Commun; 1979 Feb; 86(4):1248-55. PubMed ID: 155454
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.