These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8229087)

  • 1. The effects of exercise training of different intensities on neuromuscular junction morphology.
    Deschenes MR; Maresh CM; Crivello JF; Armstrong LE; Kraemer WJ; Covault J
    J Neurocytol; 1993 Aug; 22(8):603-15. PubMed ID: 8229087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in neuromuscular junction morphology during fast-to-slow transformation of rabbit skeletal muscles.
    Somasekhar T; Nordlander RH; Reiser PJ
    J Neurocytol; 1996 May; 25(5):315-31. PubMed ID: 8818976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction.
    Deschenes MR; Tenny KA; Wilson MH
    Neuroscience; 2006; 137(4):1277-83. PubMed ID: 16359818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of presynaptic and postsynaptic elements of neuromuscular junctions repeatedly observed in living adult mice.
    Hill RR; Robbins N; Fang ZP
    J Neurocytol; 1991 Mar; 20(3):165-82. PubMed ID: 1903804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology of diaphragm neuromuscular junctions on different fibre types.
    Prakash YS; Miller SM; Huang M; Sieck GC
    J Neurocytol; 1996 Feb; 25(2):88-100. PubMed ID: 8699198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.
    Terada S; Yokozeki T; Kawanaka K; Ogawa K; Higuchi M; Ezaki O; Tabata I
    J Appl Physiol (1985); 2001 Jun; 90(6):2019-24. PubMed ID: 11356760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of resistance training on neuromuscular junction morphology.
    Deschenes MR; Judelson DA; Kraemer WJ; Meskaitis VJ; Volek JS; Nindl BC; Harman FS; Deaver DR
    Muscle Nerve; 2000 Oct; 23(10):1576-81. PubMed ID: 11003794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions.
    Chen LL; Folsom DB; Ko CP
    J Neurosci; 1991 Sep; 11(9):2920-30. PubMed ID: 1715392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exercise training on neuromuscular junction morphology and pre- to post-synaptic coupling in young and aged rats.
    Deschenes MR; Kressin KA; Garratt RN; Leathrum CM; Shaffrey EC
    Neuroscience; 2016 Mar; 316():167-77. PubMed ID: 26711679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging neuromuscular junctions by confocal fluorescence microscopy: individual endplates seen in whole muscles with vital intracellular staining of the nerve terminals.
    Marques MJ; Santo Neto H
    J Anat; 1998 Apr; 192 ( Pt 3)(Pt 3):425-30. PubMed ID: 9688508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptations of diaphragm neuromuscular junction following inactivity.
    Prakash YS; Zhan WZ; Miyata H; Sieck GC
    Acta Anat (Basel); 1995; 154(2):147-61. PubMed ID: 8722515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic to postsynaptic relationships of the neuromuscular junction are held constant across age and muscle fiber type.
    Deschenes MR; Hurst TE; Ramser AE; Sherman EG
    Dev Neurobiol; 2013 Oct; 73(10):744-53. PubMed ID: 23696094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode of enlargement of young mouse neuromuscular junctions observed repeatedly in vivo with visualization of pre- and postsynaptic borders.
    Hill RR; Robbins N
    J Neurocytol; 1991 Mar; 20(3):183-94. PubMed ID: 2037849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence of age-associated changes to the mouse neuromuscular junction and the protective effects of voluntary exercise.
    Cheng A; Morsch M; Murata Y; Ghazanfari N; Reddel SW; Phillips WD
    PLoS One; 2013; 8(7):e67970. PubMed ID: 23844140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor nerve terminal outgrowth and acetylcholine receptors: inhibition of terminal outgrowth by alpha-bungarotoxin and anti-acetylcholine receptor antibody.
    Pestronk A; Drachman DB
    J Neurosci; 1985 Mar; 5(3):751-8. PubMed ID: 3871842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular junction development in the cutaneous pectoris muscle of Rana catesbeiana.
    Linden DC; Jerian SM; Letinsky MS
    Exp Neurol; 1988 Mar; 99(3):735-60. PubMed ID: 3257737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological differences along mammalian motor nerve terminals for spontaneous and alpha-bungarotoxin-induced sprouting.
    Tomas J; Lanuza MA; Santafé M; Fenoll-Brunet MR; Garcia N
    Histol Histopathol; 2000 Jan; 15(1):43-52. PubMed ID: 10668194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise.
    Gyorkos AM; McCullough MJ; Spitsbergen JM
    Neuroscience; 2014 Jan; 257():111-8. PubMed ID: 24215980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light and electron microscopic identification of nerve terminal sprouting and retraction in normal adult frog muscle.
    Anzil AP; Bieser A; Wernig A
    J Physiol; 1984 May; 350():393-9. PubMed ID: 6611402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric characterization of the neuromuscular junction of rodents intoxicated with 2,4-dithiobiuret: evidence that nerve terminal recycling processes contribute to muscle weakness.
    Rheuben MB; Autio DM; Xu YF; Atchison WD
    Toxicol Appl Pharmacol; 2004 Apr; 196(2):266-86. PubMed ID: 15081273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.