These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8229187)

  • 1. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites.
    Reuveni I; Friedman A; Amitai Y; Gutnick MJ
    J Neurosci; 1993 Nov; 13(11):4609-21. PubMed ID: 8229187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons.
    Schwindt PC; Crill WE
    J Neurophysiol; 1997 May; 77(5):2466-83. PubMed ID: 9163370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic membrane potential oscillations in hippocampal neurons in vitro.
    Leung LW; Yim CY
    Brain Res; 1991 Jul; 553(2):261-74. PubMed ID: 1718544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones.
    Nedergaard S; Flatman JA; Engberg I
    J Physiol; 1993 Jul; 466():727-47. PubMed ID: 8410714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential oscillations in CA1 hippocampal pyramidal neurons in vitro: intrinsic rhythms and fluctuations entrained by sinusoidal injected current.
    García-Muñoz A; Barrio LC; Buño W
    Exp Brain Res; 1993; 97(2):325-33. PubMed ID: 8150052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons.
    Jaffe DB; Johnston D; Lasser-Ross N; Lisman JE; Miyakawa H; Ross WN
    Nature; 1992 May; 357(6375):244-6. PubMed ID: 1350327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+-dependent conductances in rat neocortical pyramidal neurons.
    Schwindt PC; Crill WE
    J Neurophysiol; 1997 Jul; 78(1):187-98. PubMed ID: 9242273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent responses in neurons of the isolated respiratory network of newborn rats.
    Onimaru H; Ballanyi K; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):677-95. PubMed ID: 8815203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium electrogenesis in neocortical pyramidal neurons in vivo.
    Paré D; Lang EJ
    Eur J Neurosci; 1998 Oct; 10(10):3164-70. PubMed ID: 9786210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro.
    Bourque CW; Renaud LP
    J Physiol; 1985 Jun; 363():419-28. PubMed ID: 3926994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependent.
    Friedman A; Arens J; Heinemann U; Gutnick MJ
    Neurosci Lett; 1992 Jan; 135(1):13-7. PubMed ID: 1542430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro.
    Hounsgaard J; Kiehn O
    J Physiol; 1993 Aug; 468():245-59. PubMed ID: 8254508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus.
    Andreasen M; Lambert JD
    J Physiol; 1995 Mar; 483 ( Pt 2)(Pt 2):421-41. PubMed ID: 7650611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.