These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 8229462)
1. Lipofuscin is a photoinducible free radical generator. Boulton M; Dontsov A; Jarvis-Evans J; Ostrovsky M; Svistunenko D J Photochem Photobiol B; 1993 Aug; 19(3):201-4. PubMed ID: 8229462 [TBL] [Abstract][Full Text] [Related]
2. The photochemistry of human retinal lipofuscin as studied by EPR. Reszka K; Eldred GE; Wang RH; Chignell C; Dillon J Photochem Photobiol; 1995 Dec; 62(6):1005-8. PubMed ID: 8570736 [TBL] [Abstract][Full Text] [Related]
3. The photoreactivity of ocular lipofuscin. Boulton M; Rozanowska M; Rozanowski B; Wess T Photochem Photobiol Sci; 2004 Aug; 3(8):759-64. PubMed ID: 15295632 [TBL] [Abstract][Full Text] [Related]
4. [Opposite effect of lipofuscin granules and melanosomes from human retinal pigment epithelium of eye on photooxidation of cardiolipin]. Dontsov AE; Sakina NL; Ostrovskiĭ MA Biofizika; 1999; 44(5):880-6. PubMed ID: 10624528 [TBL] [Abstract][Full Text] [Related]
5. Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Rózanowska M; Wessels J; Boulton M; Burke JM; Rodgers MA; Truscott TG; Sarna T Free Radic Biol Med; 1998 May; 24(7-8):1107-12. PubMed ID: 9626564 [TBL] [Abstract][Full Text] [Related]
6. Detection and study of the products of photooxidation of N-retinylidene-N-retinylethanolamine (A2E), the fluorophore of lipofuscin granules from retinal pigment epithelium of human donor eyes. Yakovleva MA; Sakina NL; Kononikhin AS; Feldman TB; Nikolaev EN; Dontsov AE; Ostrovsky MA Dokl Biochem Biophys; 2006; 409():223-5. PubMed ID: 16986436 [No Abstract] [Full Text] [Related]
7. Loss of Melanin by Eye Retinal Pigment Epithelium Cells Is Associated with Its Oxidative Destruction in Melanolipofuscin Granules. Dontsov AE; Sakina NL; Ostrovsky MA Biochemistry (Mosc); 2017 Aug; 82(8):916-924. PubMed ID: 28941459 [TBL] [Abstract][Full Text] [Related]
8. Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Haralampus-Grynaviski NM; Lamb LE; Simon JD; Krogmeier JR; Dunn RC; Pawlak A; Rózanowska M; Sarna T; Burke JM Photochem Photobiol; 2001 Aug; 74(2):364-8. PubMed ID: 11547578 [TBL] [Abstract][Full Text] [Related]
9. Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Rózanowska M; Pawlak A; Rózanowski B; Skumatz C; Zareba M; Boulton ME; Burke JM; Sarna T; Simon JD Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1052-60. PubMed ID: 15037568 [TBL] [Abstract][Full Text] [Related]
10. A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin. Gaillard ER; Avalle LB; Keller LM; Wang Z; Reszka KJ; Dillon JP Exp Eye Res; 2004 Sep; 79(3):313-9. PubMed ID: 15336493 [TBL] [Abstract][Full Text] [Related]
11. Photophysical studies of A2-E, putative precursor of lipofuscin, in human retinal pigment epithelial cells. Cubeddu R; Taroni P; Hu DN; Sakai N; Nakanishi K; Roberts JE Photochem Photobiol; 1999 Aug; 70(2):172-5. PubMed ID: 10461456 [TBL] [Abstract][Full Text] [Related]
12. Photoreactivity of aged human RPE melanosomes: a comparison with lipofuscin. Rózanowska M; Korytowski W; Rózanowski B; Skumatz C; Boulton ME; Burke JM; Sarna T Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2088-96. PubMed ID: 12091401 [TBL] [Abstract][Full Text] [Related]
13. A new approach to measuring the action spectrum for singlet oxygen production by human retinal lipofuscin. Avalle LB; Dillon J; Tari S; Gaillard ER Photochem Photobiol; 2005; 81(6):1347-50. PubMed ID: 16120003 [TBL] [Abstract][Full Text] [Related]
14. Retinyl palmitate and the blue-light-induced phototoxicity of human ocular lipofuscin. Lamb LE; Zareba M; Plakoudas SN; Sarna T; Simon JD Arch Biochem Biophys; 2001 Sep; 393(2):316-20. PubMed ID: 11556819 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic and morphological studies of human retinal lipofuscin granules. Haralampus-Grynaviski NM; Lamb LE; Clancy CM; Skumatz C; Burke JM; Sarna T; Simon JD Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3179-84. PubMed ID: 12612344 [TBL] [Abstract][Full Text] [Related]
16. Changes in spectral properties and composition of lipofuscin fluorophores from human-retinal-pigment epithelium with age and pathology. Feldman TB; Yakovleva MA; Arbukhanova PM; Borzenok SA; Kononikhin AS; Popov IA; Nikolaev EN; Ostrovsky MA Anal Bioanal Chem; 2015 Feb; 407(4):1075-88. PubMed ID: 25471291 [TBL] [Abstract][Full Text] [Related]
18. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. Godley BF; Shamsi FA; Liang FQ; Jarrett SG; Davies S; Boulton M J Biol Chem; 2005 Jun; 280(22):21061-6. PubMed ID: 15797866 [TBL] [Abstract][Full Text] [Related]
19. The photoreactivity of the retinal age pigment lipofuscin. Wassell J; Davies S; Bardsley W; Boulton M J Biol Chem; 1999 Aug; 274(34):23828-32. PubMed ID: 10446145 [TBL] [Abstract][Full Text] [Related]
20. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Boulton M; Docchio F; Dayhaw-Barker P; Ramponi R; Cubeddu R Vision Res; 1990; 30(9):1291-303. PubMed ID: 2219746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]