BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 8229832)

  • 1. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes.
    Deutsch N; Weiss JN
    J Physiol; 1993 Jun; 465():163-79. PubMed ID: 8229832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K(+) channels and Na(+)-activated K(+) channels.
    Li Y; Sato T; Arita M
    J Pharmacol Exp Ther; 1999 Nov; 291(2):562-8. PubMed ID: 10525072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine triphosphate-dependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim.
    Krause E; Englert H; Gögelein H
    Pflugers Arch; 1995 Mar; 429(5):625-35. PubMed ID: 7792140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the adenosine 5'-triphosphate-sensitive K+ channel by trypsin in guinea-pig ventricular myocytes.
    Furukawa T; Fan Z; Sawanobori T; Hiraoka M
    J Physiol; 1993 Jul; 466():707-26. PubMed ID: 8410713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent fading of the activation of KATP channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes.
    Thuringer D; Cavero I; Coraboeuf E
    Br J Pharmacol; 1995 May; 115(1):117-27. PubMed ID: 7647966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of ATP-sensitive K+ channel activity in intact and permeabilized rat ventricular myocytes.
    Nichols CG; Lederer WJ
    J Physiol; 1990 Apr; 423():91-110. PubMed ID: 2388163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle.
    Weiss JN; Venkatesh N; Lamp ST
    J Physiol; 1992 Feb; 447():649-73. PubMed ID: 1593462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N; Lamp ST; Weiss JN
    Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis.
    Weiss JN; Lamp ST
    J Gen Physiol; 1989 Nov; 94(5):911-35. PubMed ID: 2512370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle.
    Venkatesh N; Stuart JS; Lamp ST; Alexander LD; Weiss JN
    Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diadenosine tetraphosphate-induced inhibition of ATP-sensitive K+ channels in patches excised from ventricular myocytes.
    Jovanovic A; Terzic A
    Br J Pharmacol; 1996 Jan; 117(2):233-5. PubMed ID: 8789372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium.
    Nakaya H; Takeda Y; Tohse N; Kanno M
    Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface charge and properties of cardiac ATP-sensitive K+ channels.
    Deutsch N; Matsuoka S; Weiss JN
    J Gen Physiol; 1994 Oct; 104(4):773-800. PubMed ID: 7836941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of K(ATP) channels by P(2Y) purinoceptors coupled to PIP(2) metabolism in guinea pig ventricular cells.
    Oketani N; Kakei M; Ichinari K; Okamura M; Miyamura A; Nakazaki M; Ito S; Tei C
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H757-65. PubMed ID: 11788427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of excitation-contraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes.
    Goldhaber JI; Parker JM; Weiss JN
    J Physiol; 1991 Nov; 443():371-86. PubMed ID: 1822531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium inhibition of sodium-activated potassium (K(Na)) channels in guinea-pig ventricular myocytes.
    Niu XW; Meech RW
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):81-90. PubMed ID: 10878101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle.
    Koumi S; Wasserstrom JA; Ten Eick RE
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):661-78. PubMed ID: 7473227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle.
    Findlay I
    J Pharmacol Exp Ther; 1993 Jul; 266(1):456-67. PubMed ID: 8331572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.