These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8229895)

  • 1. Conductances contributing to the action potential of Sternopygus electrocytes.
    Ferrari MB; Zakon HH
    J Comp Physiol A; 1993 Sep; 173(3):281-92. PubMed ID: 8229895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish.
    Smith GT; Zakon HH
    J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP modulates electrical signaling in a weakly electric fish.
    McAnelly L; Silva A; Zakon HH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):273-82. PubMed ID: 12743732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic mechanisms of microsecond-scale spike timing in single cells.
    Markham MR; Zakon HH
    J Neurosci; 2014 May; 34(19):6668-78. PubMed ID: 24806692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric organ morphology of Sternopygus macrurus, a wave-type, weakly electric fish with a sexually dimorphic EOD.
    Mills A; Zakon HH; Marchaterre MA; Bass AH
    J Neurobiol; 1992 Sep; 23(7):920-32. PubMed ID: 1431851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo.
    Sierra F; Comas V; Buño W; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):1-11. PubMed ID: 15372305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ.
    McAnelly ML; Zakon HH
    J Neurosci; 2000 May; 20(9):3408-14. PubMed ID: 10777803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated potassium conductances in Gymnotus electrocytes(AB).
    Sierra F; Comas V; Buño W; Macadar O
    Neuroscience; 2007 Mar; 145(2):453-63. PubMed ID: 17222982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration.
    Villière V; McLachlan EM
    J Neurophysiol; 1996 Sep; 76(3):1924-41. PubMed ID: 8890304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus.
    Dunlap KD; McAnelly ML; Zakon HH
    J Neurosci; 1997 Apr; 17(8):2869-75. PubMed ID: 9092608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons.
    Birinyi-Strachan LC; Gunning SJ; Lewis RJ; Nicholson GM
    Toxicol Appl Pharmacol; 2005 Apr; 204(2):175-86. PubMed ID: 15808523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual variation in and androgen-modulation of the sodium current in electric organ.
    Ferrari MB; McAnelly ML; Zakon HH
    J Neurosci; 1995 May; 15(5 Pt 2):4023-32. PubMed ID: 7751963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish.
    McAnelly ML; Zakon HH
    Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.