These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 8230196)
1. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. Chen CC; Rahil J; Pratt RF; Herzberg O J Mol Biol; 1993 Nov; 234(1):165-78. PubMed ID: 8230196 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases. Maveyraud L; Pratt RF; Samama JP Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates. Nagarajan R; Pratt RF Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621 [TBL] [Abstract][Full Text] [Related]
4. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state. Silvaggi NR; Anderson JW; Brinsmade SR; Pratt RF; Kelly JA Biochemistry; 2003 Feb; 42(5):1199-208. PubMed ID: 12564922 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Lobkovsky E; Billings EM; Moews PC; Rahil J; Pratt RF; Knox JR Biochemistry; 1994 Jun; 33(22):6762-72. PubMed ID: 8204611 [TBL] [Abstract][Full Text] [Related]
7. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Strynadka NC; Adachi H; Jensen SE; Johns K; Sielecki A; Betzel C; Sutoh K; James MN Nature; 1992 Oct; 359(6397):700-5. PubMed ID: 1436034 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
9. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Chen CC; Herzberg O Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. Ullah JH; Walsh TR; Taylor IA; Emery DC; Verma CS; Gamblin SJ; Spencer J J Mol Biol; 1998 Nov; 284(1):125-36. PubMed ID: 9811546 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201 [TBL] [Abstract][Full Text] [Related]
12. Modeling study on a hydrolytic mechanism of class A beta-lactamases. Ishiguro M; Imajo S J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364 [TBL] [Abstract][Full Text] [Related]
13. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
14. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
15. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108 [TBL] [Abstract][Full Text] [Related]
16. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
17. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling. Bernstein NJ; Pratt RF Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of a (-) gamma-lactamase from an Aureobacterium species reveals a tetrahedral intermediate in the active site. Line K; Isupov MN; Littlechild JA J Mol Biol; 2004 Apr; 338(3):519-32. PubMed ID: 15081810 [TBL] [Abstract][Full Text] [Related]
20. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]