BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 8230213)

  • 1. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y; Gnatt A; Neville LF; Soreq H
    J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overlapping drug interaction sites of human butyrylcholinesterase dissected by site-directed mutagenesis.
    Loewenstein-Lichtenstein Y; Glick D; Gluzman N; Sternfeld M; Zakut H; Soreq H
    Mol Pharmacol; 1996 Dec; 50(6):1423-31. PubMed ID: 8967962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors.
    Campiani G; Fattorusso C; Butini S; Gaeta A; Agnusdei M; Gemma S; Persico M; Catalanotti B; Savini L; Nacci V; Novellino E; Holloway HW; Greig NH; Belinskaya T; Fedorko JM; Saxena A
    J Med Chem; 2005 Mar; 48(6):1919-29. PubMed ID: 15771436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP
    Biochemistry; 1997 Dec; 36(48):14642-51. PubMed ID: 9398183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives.
    Darvesh S; McDonald RS; Penwell A; Conrad S; Darvesh KV; Mataija D; Gomez G; Caines A; Walsh R; Martin E
    Bioorg Med Chem; 2005 Jan; 13(1):211-22. PubMed ID: 15582466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase.
    Neville LF; Gnatt A; Loewenstein Y; Soreq H
    J Neurosci Res; 1990 Dec; 27(4):452-60. PubMed ID: 2079709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase.
    Berman HA; Leonard K
    Mol Pharmacol; 1992 Feb; 41(2):412-8. PubMed ID: 1538717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors.
    Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A
    J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.
    Darvesh S; Darvesh KV; McDonald RS; Mataija D; Walsh R; Mothana S; Lockridge O; Martin E
    J Med Chem; 2008 Jul; 51(14):4200-12. PubMed ID: 18570368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxyphenyl)- methyl]aminoalkoxyheteroaryl derivatives.
    Rampa A; Bisi A; Valenti P; Recanatini M; Cavalli A; Andrisano V; Cavrini V; Fin L; Buriani A; Giusti P
    J Med Chem; 1998 Oct; 41(21):3976-86. PubMed ID: 9767635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A; Gazić I; Vinković V; Kovarik Z
    Arch Biochem Biophys; 2008 Mar; 471(1):72-6. PubMed ID: 18167304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The fasciculin-acetylcholinesterase interaction].
    Marchot P
    J Soc Biol; 1999; 193(6):505-8. PubMed ID: 10783708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants.
    Schwarz M; Loewenstein-Lichtenstein Y; Glick D; Liao J; Norgaard-Pedersen B; Soreq H
    Brain Res Mol Brain Res; 1995 Jul; 31(1-2):101-10. PubMed ID: 7476018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of human butyrylcholinesterase.
    Suárez D; Field MJ
    Proteins; 2005 Apr; 59(1):104-17. PubMed ID: 15696543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors.
    Huang L; Shi A; He F; Li X
    Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P
    Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.