BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8230460)

  • 1. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins.
    Opstelten DJ; de Groote P; Horzinek MC; Vennema H; Rottier PJ
    J Virol; 1993 Dec; 67(12):7394-401. PubMed ID: 8230460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of the mouse hepatitis virus spike protein and its association with the membrane protein.
    Opstelten DJ; de Groote P; Horzinek MC; Rottier PJ
    Arch Virol Suppl; 1994; 9():319-28. PubMed ID: 8032264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The secretory pathway is normal in dithiothreitol-treated cells, but disulfide-bonded proteins are reduced and reversibly retained in the endoplasmic reticulum.
    Lodish HF; Kong N
    J Biol Chem; 1993 Sep; 268(27):20598-605. PubMed ID: 8397210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexpression and association of the spike protein and the membrane protein of mouse hepatitis virus.
    Opstelten DJ; Raamsman MJ; Wolfs K; Horzinek MC; Rottier PJ
    Adv Exp Med Biol; 1995; 380():291-7. PubMed ID: 8830496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells.
    Tatu U; Braakman I; Helenius A
    EMBO J; 1993 May; 12(5):2151-7. PubMed ID: 8491203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum.
    Braakman I; Helenius J; Helenius A
    EMBO J; 1992 May; 11(5):1717-22. PubMed ID: 1582407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective retention of secretory proteins in the yeast endoplasmic reticulum by treatment of cells with a reducing agent.
    Jämsä E; Simonen M; Makarow M
    Yeast; 1994 Mar; 10(3):355-70. PubMed ID: 8017105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide bridge-mediated folding of Sindbis virus glycoproteins.
    Carleton M; Brown DT
    J Virol; 1996 Aug; 70(8):5541-7. PubMed ID: 8764067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes.
    de Silva A; Braakman I; Helenius A
    J Cell Biol; 1993 Feb; 120(3):647-55. PubMed ID: 8381122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex formation between the spike protein and the membrane protein during mouse hepatitis virus assembly.
    Opstelten DJ; Horzinek MC; Rottier PJ
    Adv Exp Med Biol; 1993; 342():189-95. PubMed ID: 8209729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Envelope glycoprotein interactions in coronavirus assembly.
    Opstelten DJ; Raamsman MJ; Wolfs K; Horzinek MC; Rottier PJ
    J Cell Biol; 1995 Oct; 131(2):339-49. PubMed ID: 7593163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cotranslational disulfide bond formation in the folding of the hemagglutinin-neuraminidase protein of Newcastle disease virus.
    McGinnes LW; Morrison TG
    Virology; 1996 Oct; 224(2):465-76. PubMed ID: 8874507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step.
    Krijnse-Locker J; Ericsson M; Rottier PJ; Griffiths G
    J Cell Biol; 1994 Jan; 124(1-2):55-70. PubMed ID: 8294506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus.
    Hammond C; Helenius A
    J Cell Biol; 1994 Jul; 126(1):41-52. PubMed ID: 8027184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coronavirus envelope glycoprotein assembly complexes.
    Nguyen VP; Hogue BG
    Adv Exp Med Biol; 1998; 440():361-5. PubMed ID: 9782304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E.
    Nal B; Chan C; Kien F; Siu L; Tse J; Chu K; Kam J; Staropoli I; Crescenzo-Chaigne B; Escriou N; van der Werf S; Yuen KY; Altmeyer R
    J Gen Virol; 2005 May; 86(Pt 5):1423-1434. PubMed ID: 15831954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differential effects of dithiothreitol and 2-mercaptoethanol on the secretion of partially and completely assembled immunoglobulins suggest that thiol-mediated retention does not take place in or beyond the Golgi.
    Valetti C; Sitia R
    Mol Biol Cell; 1994 Dec; 5(12):1311-24. PubMed ID: 7696712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ATP depletion and DTT on the transport of membrane proteins from the endoplasmic reticulum and the intermediate compartment to the Golgi complex.
    Verde C; Pascale MC; Martire G; Lotti LV; Torrisi MR; Helenius A; Bonatti S
    Eur J Cell Biol; 1995 Jul; 67(3):267-74. PubMed ID: 7588883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and maturation of tyrosinase-related protein-1 are regulated by the post-translational formation of disulfide bonds and by N-glycan processing.
    Negroiu G; Dwek RA; Petrescu SM
    J Biol Chem; 2000 Oct; 275(41):32200-7. PubMed ID: 10915799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly.
    Svensson L; Dormitzer PR; von Bonsdorff CH; Maunula L; Greenberg HB
    J Virol; 1994 Aug; 68(8):5204-15. PubMed ID: 8035518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.