BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8231323)

  • 1. Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography.
    Miyakawa M
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S31-6. PubMed ID: 8231323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of multi-angle ultra-wide band microwave sounding for high resolution breast imaging.
    Shipilov S; Eremeev A; Yakubov V; Fedyanin I; Satarov R; Zavyalova K; Shipilova S; Balzovsky E
    Med Phys; 2020 Oct; 47(10):5147-5157. PubMed ID: 32885421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image restoration in chirp-pulse microwave CT (CP-MCT).
    Bertero M; Miyakawa M; Boccacci P; Conte F; Orikasa K; Furutani M
    IEEE Trans Biomed Eng; 2000 May; 47(5):690-9. PubMed ID: 10851813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Investigations for Non-invasive Temperature Change Detection in Thermotherapy by Means of UWB Microwave Radar.
    Ley S; Fiser O; Merunka I; Vrba J; Sachs J; Helbig M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5386-5389. PubMed ID: 30441554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of non-uniform breast phantom and its microwave imaging for tumor detection by CP-MCT.
    Miyakawa M; Takata S; Inotsume K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2723-6. PubMed ID: 19964041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time breast microwave radar image reconstruction using circular holography: a study of experimental feasibility.
    Flores-Tapia D; Pistorius S
    Med Phys; 2011 Oct; 38(10):5420-31. PubMed ID: 21992361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast tumor detection using UWB circular-SAR tomographic microwave imaging.
    Oloumi D; Boulanger P; Kordzadeh A; Rambabu K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7063-6. PubMed ID: 26737919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility study of fiducial marker localization using microwave radar.
    Han-Oh S; Ding K; Song D; Narang A; Wong J; Rong Y; Bliss D
    Med Phys; 2021 Nov; 48(11):7271-7282. PubMed ID: 34482551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental feasibility of multistatic holography for breast microwave radar image reconstruction.
    Flores-Tapia D; Rodriguez D; Solis M; Kopotun N; Latif S; Maizlish O; Fu L; Gui Y; Hu CM; Pistorius S
    Med Phys; 2016 Aug; 43(8):4674. PubMed ID: 27487884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Air-Operated Bistatic System for Breast Microwave Radar Imaging: Pre-Clinical Validation.
    Solis-Nepote M; Reimer T; Pistorius S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1859-1862. PubMed ID: 31946260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring variations of biological impedances using microwave Doppler radar.
    Thansandote A; Stuchly SS; Smith AM
    Phys Med Biol; 1983 Aug; 28(8):983-90. PubMed ID: 6622532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia.
    Amasha HM; Anderson AP; Conway J; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():49-53. PubMed ID: 3240649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.
    O'Loughlin D; Oliveira BL; Elahi MA; Glavin M; Jones E; Popović M; O'Halloran M
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29211018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy.
    Du Y; Zhang L; Sang L; Wu D
    Technol Health Care; 2016 Apr; 24 Suppl 2():S675-82. PubMed ID: 27177098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast cancer detection using interferometric MUSIC: experimental and numerical assessment.
    Ruvio G; Solimene R; Cuccaro A; Gaetano D; Browne JE; Ammann MJ
    Med Phys; 2014 Oct; 41(10):103101. PubMed ID: 25281985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging.
    Nie L; Xing D; Zhou Q; Yang D; Guo H
    Med Phys; 2008 Sep; 35(9):4026-32. PubMed ID: 18841854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography.
    Nie L; Xing D; Yang S
    Med Phys; 2009 Aug; 36(8):3429-37. PubMed ID: 19746776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel RF-source-free reconfigurable microwave photonic radar.
    Zhang X; Zeng H; Yang J; Yin Z; Sun Q; Li W
    Opt Express; 2020 Apr; 28(9):13650-13661. PubMed ID: 32403835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of skin reflections in radar-based microwave breast imaging.
    Maklad B; Fear EC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():21-4. PubMed ID: 19162584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active microwave tomographic imaging of isolated, perfused animal organs.
    Guerquin-Kern JL; Gautherie M; Peronnet G; Jofre L; Bolomey JC
    Bioelectromagnetics; 1985; 6(2):145-56. PubMed ID: 4004947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.