These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 8231459)

  • 1. The alpha study: multiple regression of the inositol 1,4,5-triphosphate signal transduction mechanism in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993; 15(6):395-406. PubMed ID: 8231459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple regression of skeletal muscle tension on inositol phosphates: cross-talk between signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993 Jun; 15(5):255-65. PubMed ID: 8412410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and skeletal muscle: a multiple regression on signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993 Sep; 15(7):471-82. PubMed ID: 8255127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate influence of polyinositols on IP3 in diaphragm: individually applied matrix and vectorial analysis of trauma from small and large body surface area burn groups.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1993 Oct; 15(8):497-507. PubMed ID: 8309314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-modulation between acetylcholinesterase and cyclic nucleotide signal transduction systems in burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1995 Mar; 17(2):89-105. PubMed ID: 7674703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk of second messengers during the systemic trauma response following burn injury: how, when, and where.
    Tomera JF; Kukulka SP; Lilford K
    Circ Shock; 1993 Feb; 39(2):128-38. PubMed ID: 8387897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple stepwise regression analysis of physiologic tension and secondary messengers in chronic burn trauma.
    Tomera JF; Lilford K
    Methods Find Exp Clin Pharmacol; 1994 May; 16(4):235-46. PubMed ID: 8051982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysfunctional metabolism induced by the systemic effects of burn trauma: the role of rates of polyinositol and glycerophosphate formation in diaphragm.
    Tomera JF; Lilford K; Kukulka SP
    J Burn Care Rehabil; 1993; 14(6):639-52. PubMed ID: 8300699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate influence of inositol phosphates on cAMP: interrelationships between signal transduction mechanisms in burn trauma.
    Tomera JF; Lilford K
    Burns; 1993 Aug; 19(4):313-9. PubMed ID: 8395175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial [3H]polyinositol phosphates and their response to burn trauma.
    Tomera JF; Kukulka SP; Lilford K
    Burns; 1993 Oct; 19(5):379-86. PubMed ID: 8216763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in diaphragm polyinositol phosphates caused by a large body surface area burn.
    Tomera JF; Lilford K; Kukulka SP
    Burns; 1993 Feb; 19(1):35-42. PubMed ID: 8435113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multivariate and vectorial analysis of pharmacological signalling: diaphragm inositol 1,4,5-triphosphate under the duress of burn trauma.
    Tomera JF; Lilford K
    Burns; 1994 Apr; 20(2):136-45. PubMed ID: 8198718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of gastrocnemius [3H]polyinositol phosphates in response to burn trauma.
    Tomera JF; Kukulka SP; Lilford K
    Burns; 1992 Oct; 18(5):381-6. PubMed ID: 1445627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyinositol interrelationships in skeletal muscle under the duress of burn trauma.
    Tomera JF; Lilford K; Kukulka SP
    Burns; 1994 Jun; 20(3):212-9. PubMed ID: 8054132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol trisphosphate/Ca2+ as a major signal transduction pathway from bradykinin receptors.
    Higashida H; Kimura Y
    Jpn J Physiol; 1993; 43 Suppl 1():S95-9. PubMed ID: 8271522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of burn trauma on adenosine 3':5' cyclic monophosphate, inositol trisphosphate, and contraction in mouse gastrocnemius muscle.
    Tomera JF
    J Burn Care Rehabil; 1991; 12(6):485-97. PubMed ID: 1663953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of p38MAPK signal transduction pathway in Kupffer cells production of TNF-alpha and IL-1beta in severely burned rats].
    Chen XL; Xia ZF; Wei D; Ben DF; Wang YJ
    Zhonghua Wai Ke Za Zhi; 2005 Feb; 43(3):185-8. PubMed ID: 15842901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Back in the water: the return of the inositol phosphates.
    Irvine RF; Schell MJ
    Nat Rev Mol Cell Biol; 2001 May; 2(5):327-38. PubMed ID: 11331907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular or pharmacologic inhibition of the CD14 signaling pathway protects against burn-related myocardial inflammation and dysfunction.
    Barber RC; Maass DL; White DJ; Chang LY; Horton JW
    Shock; 2008 Dec; 30(6):705-13. PubMed ID: 18461018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Signal transduction mechanism in burn wound healing].
    Luo XD
    Zhonghua Shao Shang Za Zhi; 2008 Oct; 24(5):367-8. PubMed ID: 19103020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.