These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 8232536)
1. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Bailey B; Farkas DL; Taylor DL; Lanni F Nature; 1993 Nov; 366(6450):44-8. PubMed ID: 8232536 [TBL] [Abstract][Full Text] [Related]
2. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis. Periasamy A; Skoglund P; Noakes C; Keller R Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332 [TBL] [Abstract][Full Text] [Related]
3. Development of a standing-wave fluorescence microscope with high nodal plane flatness. Freimann R; Pentz S; Hörler H J Microsc; 1997 Sep; 187(Pt 3):193-200. PubMed ID: 9351235 [TBL] [Abstract][Full Text] [Related]
4. In vivo, real-time confocal imaging. Jester JV; Andrews PM; Petroll WM; Lemp MA; Cavanagh HD J Electron Microsc Tech; 1991 May; 18(1):50-60. PubMed ID: 2056351 [TBL] [Abstract][Full Text] [Related]
5. [Confocal scanning microscopy for biomedicine]. Ge HY; Wang BH Zhongguo Yi Liao Qi Xie Za Zhi; 2005 May; 29(3):157-60. PubMed ID: 16124616 [TBL] [Abstract][Full Text] [Related]
10. Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle. Mattheyses AL; Shaw K; Axelrod D Microsc Res Tech; 2006 Aug; 69(8):642-7. PubMed ID: 16770769 [TBL] [Abstract][Full Text] [Related]
11. High-resolution 3-D imaging of living cells in suspension using confocal axial tomography. Renaud O; Viña J; Yu Y; Machu C; Trouvé A; Van der Voort H; Chalmond B; Shorte SL Biotechnol J; 2008 Jan; 3(1):53-62. PubMed ID: 18022857 [TBL] [Abstract][Full Text] [Related]
12. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Chung E; Kim D; Cui Y; Kim YH; So PT Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188 [TBL] [Abstract][Full Text] [Related]
13. Nanosizing by spatially modulated illumination (SMI) microscopy and applications to the nucleus. Birk UJ; Baddeley D; Cremer C Methods Mol Biol; 2009; 464():389-401. PubMed ID: 18951196 [TBL] [Abstract][Full Text] [Related]
14. Two-photon fluorescence excitation and related techniques in biological microscopy. Diaspro A; Chirico G; Collini M Q Rev Biophys; 2005 May; 38(2):97-166. PubMed ID: 16478566 [TBL] [Abstract][Full Text] [Related]
16. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture. Diaspro A; Corosu M; Ramoino P; Robello M Microsc Res Tech; 1999 Nov; 47(3):196-205. PubMed ID: 10544334 [TBL] [Abstract][Full Text] [Related]
17. Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Tengholm A; Teruel MN; Meyer T Sci STKE; 2003 Feb; 2003(169):PL4. PubMed ID: 12582202 [TBL] [Abstract][Full Text] [Related]
18. From micro to nano: recent advances in high-resolution microscopy. Garini Y; Vermolen BJ; Young IT Curr Opin Biotechnol; 2005 Feb; 16(1):3-12. PubMed ID: 15722009 [TBL] [Abstract][Full Text] [Related]
19. A new fluorescence microscopy for tomographic observation of microcirculation by using dual-beam slit laser illumination. Shibata M; Kawamura T; Sohirad M; Kamiya A Microvasc Res; 1995 May; 49(3):300-14. PubMed ID: 7643751 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton. Schniete JK; Tinning PW; Scrimgeour RC; Robb G; Kölln LS; Wesencraft K; Paul NR; Bushell TJ; McConnell G Sci Rep; 2021 Feb; 11(1):2903. PubMed ID: 33536463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]