These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8233347)

  • 1. Distribution of autofluorescence in the rabbit corneal epithelium.
    Shimazaki J; Tsubota K; Hayashi K; Kenyon KR; Laing RA
    Ophthalmic Res; 1993; 25(4):220-5. PubMed ID: 8233347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes of corneal redox state in diabetic animal models.
    Shimazaki J; Tsubota K; Yoshida A; Tornheim K; Laing RA
    Cornea; 1995 Mar; 14(2):196-201. PubMed ID: 7743804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic changes in the corneal epithelium resulting from hard contact lens wear.
    Tsubota K; Laing RA
    Cornea; 1992 Mar; 11(2):121-6. PubMed ID: 1582214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens.
    Tsubota K; Laing RA; Kenyon KR
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):785-9. PubMed ID: 3570689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive metabolic analysis of preserved rabbit cornea.
    Tsubota K; Laing RA; Chiba K; Hanninen LA; Kenyon KR
    Arch Ophthalmol; 1988 Dec; 106(12):1713-7. PubMed ID: 3196214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive assessment of the donor corneal endothelium using ocular redox fluorometry.
    Shimazaki J; Laing RA; Tsubota K; Kenyon KR
    Br J Ophthalmol; 1996 Jan; 80(1):69-73. PubMed ID: 8664237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Noninvasive metabolic analysis of the diabetic cornea and lens: in vivo measurement].
    Shimazaki J; Tsubota K; Hattori M; Laing RA
    Nippon Ganka Gakkai Zasshi; 1992 Feb; 96(2):119-24. PubMed ID: 1558009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive redox fluorometry: how light can be used to monitor alterations of corneal mitochondrial function.
    Masters BR
    Curr Eye Res; 1984 Jan; 3(1):23-6. PubMed ID: 6690223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Metabolic analysis of the diseased human corneal endothelium].
    Shimazaki J; Laing RA; Tsubota K; Kenyon KR
    Nippon Ganka Gakkai Zasshi; 1992 Jul; 96(7):828-33. PubMed ID: 1502980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive measurements of pyridine nucleotide fluorescence from the cornea.
    Laing RA; Fischbarg J; Chance B
    Invest Ophthalmol Vis Sci; 1980 Jan; 19(1):96-102. PubMed ID: 7350140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens redox fluorometry: pyridine nucleotide fluorescence and analysis of diabetic lens.
    Tsubota K; Krauss JM; Kenyon KR; Laing RA; Miglior S; Cheng HM
    Exp Eye Res; 1989 Sep; 49(3):321-34. PubMed ID: 2792231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of redox fluorometry and analytical measurements of pyridine nucleotide.
    Shimazaki J; Tornheim K; Laing RA
    Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2274-8. PubMed ID: 2793366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine nucleotides and phosphorylation potential of rabbit corneal epithelium and endothelium.
    Masters BR; Ghosh AK; Wilson J; Matschinsky FM
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):861-68. PubMed ID: 2722442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and morphologic changes in the corneal endothelium. The effects of potassium cyanide, iodoacetamide, and ouabain.
    Laing RA; Chiba K; Tsubota K; Oak SS
    Invest Ophthalmol Vis Sci; 1992 Nov; 33(12):3315-24. PubMed ID: 1428707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolytic oscillation and effect of metabolic inhibitor on rat lens.
    Tsubota K; Laing RA
    Jpn J Ophthalmol; 1992; 36(3):265-72. PubMed ID: 1464967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates.
    Masters BR; Riley MV; Fischbarg J; Chance B
    Exp Eye Res; 1983 Jul; 37(1):1-9. PubMed ID: 6873201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic fluorescence emission from the cornea at low temperatures: evidence of mitochondrial signals and their differing redox states in epithelial and endothelial sides.
    Chance B; Lieberman M
    Exp Eye Res; 1978 Jan; 26(1):111-7. PubMed ID: 203471
    [No Abstract]   [Full Text] [Related]  

  • 18. Autofluorescence spectroscopy of epithelial tissues.
    Wu Y; Qu JY
    J Biomed Opt; 2006; 11(5):054023. PubMed ID: 17092172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Redox fluorometry study of corneal flavoproteins following hypoxia. Preliminary results].
    Raynaud C; Coulangeon LM; Sole P; Coudert J
    J Fr Ophtalmol; 1995; 18(5):347-55. PubMed ID: 7560770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo flavoprotein redox measurements of rabbit corneal normoxic-anoxic transitions.
    Masters BR; Falk S; Chance B
    Curr Eye Res; 1981-1982; 1(10):623-7. PubMed ID: 7344834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.