BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8233785)

  • 1. Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif.
    Fossella JA; Kim YJ; Shih H; Richards EG; Fresco JR
    Nucleic Acids Res; 1993 Sep; 21(19):4511-5. PubMed ID: 8233785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA.
    Yoon K; Hobbs CA; Koch J; Sardaro M; Kutny R; Weis AL
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3840-4. PubMed ID: 1570302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples.
    Radhakrishnan I; Patel DJ
    Structure; 1994 Jan; 2(1):17-32. PubMed ID: 8075980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution.
    Wang Y; Patel DJ
    Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix.
    Pilch DS; Levenson C; Shafer RH
    Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability.
    Mergny JL; Sun JS; Rougée M; Montenay-Garestier T; Barcelo F; Chomilier J; Hélène C
    Biochemistry; 1991 Oct; 30(40):9791-8. PubMed ID: 1911764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of an antiparallel purine motif triplex containing a T.CG pyrimidine base triple.
    Ji J; Hogan ME; Gao X
    Structure; 1996 Apr; 4(4):425-35. PubMed ID: 8740365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Berenil binding to higher ordered nucleic acid structures: complexation with a DNA and RNA triple helix.
    Pilch DS; Kirolos MA; Breslauer KJ
    Biochemistry; 1995 Dec; 34(49):16107-24. PubMed ID: 8519768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.
    Dittrich K; Gu J; Tinder R; Hogan M; Gao X
    Biochemistry; 1994 Apr; 33(14):4111-20. PubMed ID: 8155628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of selective cytosine methylation and hydration on the conformations of DNA triple helices containing a TTTT loop structure by FT-IR spectroscopy.
    Fang Y; Bai C; Wei Y; Lin SB; Kan L
    J Biomol Struct Dyn; 1995 Dec; 13(3):471-82. PubMed ID: 8825727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid.
    Xodo LE; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Eur J Biochem; 1993 Mar; 212(2):395-401. PubMed ID: 8444176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4.
    Rajagopal P; Feigon J
    Biochemistry; 1989 Sep; 28(19):7859-70. PubMed ID: 2611217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of antiparallel DNA triple helix formation.
    Chandler SP; Fox KR
    Biochemistry; 1996 Nov; 35(47):15038-48. PubMed ID: 8942670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix.
    Park YW; Breslauer KJ
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6653-7. PubMed ID: 1321445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and stability of X.G.C mismatches in the third strand of intramolecular triplexes.
    Macaya RF; Gilbert DE; Malek S; Sinsheimer JS; Feigon J
    Science; 1991 Oct; 254(5029):270-4. PubMed ID: 1925581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity and stringency in DNA triplex formation.
    Roberts RW; Crothers DM
    Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9397-401. PubMed ID: 1946351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets.
    Jayasena SD; Johnston BH
    Biochemistry; 1992 Jan; 31(2):320-7. PubMed ID: 1731890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.