These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8234160)

  • 1. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: a test of the Flory-Huggins and Vrentas models.
    Hancock BC; Zografi G
    Pharm Res; 1993 Sep; 10(9):1262-7. PubMed ID: 8234160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures.
    Zhang J; Zografi G
    J Pharm Sci; 2001 Sep; 90(9):1375-85. PubMed ID: 11745790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions.
    Crowley KJ; Zografi G
    J Pharm Sci; 2002 Oct; 91(10):2150-65. PubMed ID: 12226842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone).
    Oksanen CA; Zografi G
    Pharm Res; 1990 Jun; 7(6):654-7. PubMed ID: 2367334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between "BET" and "free volume"-derived parameters for water vapor absorption into amorphous solids.
    Zhang J; Zografi G
    J Pharm Sci; 2000 Aug; 89(8):1063-72. PubMed ID: 10906730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility.
    Marsac PJ; Shamblin SL; Taylor LS
    Pharm Res; 2006 Oct; 23(10):2417-26. PubMed ID: 16933098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of ramping and equilibrium water vapor sorption methods to determine the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose.
    Li QE; Schmidt SJ
    J Food Sci; 2011; 76(1):E149-57. PubMed ID: 21535666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.
    Yuan X; Carter BP; Schmidt SJ
    J Food Sci; 2011; 76(1):E78-89. PubMed ID: 21535679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids.
    Hancock BC; Zografi G
    Pharm Res; 1994 Apr; 11(4):471-7. PubMed ID: 8058600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of absorbed water on the properties of amorphous mixtures containing sucrose.
    Shamblin SL; Zografi G
    Pharm Res; 1999 Jul; 16(7):1119-24. PubMed ID: 10450941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions.
    Lehmkemper K; Kyeremateng SO; Heinzerling O; Degenhardt M; Sadowski G
    Mol Pharm; 2017 Jan; 14(1):157-171. PubMed ID: 28043133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation of reactant mobility in an amorphous formulation of a peptide in poly(vinylpyrrolidone).
    Xiang TX; Anderson BD
    J Pharm Sci; 2004 Apr; 93(4):855-76. PubMed ID: 14999724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.
    van Drooge DJ; Hinrichs WL; Visser MR; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):220-9. PubMed ID: 16427226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of glass transition temperature and in situ study of the plasticizing effect of water by inverse gas chromatography.
    Surana R; Randall L; Pyne A; Vemuri NM; Suryanarayanan R
    Pharm Res; 2003 Oct; 20(10):1647-54. PubMed ID: 14620521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between water and poly(vinylpyrrolidone) containing polyethylene glycol.
    Hamaura T; Newton JM
    J Pharm Sci; 1999 Nov; 88(11):1228-33. PubMed ID: 10564074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers.
    Taylor LS; Langkilde FW; Zografi G
    J Pharm Sci; 2001 Jul; 90(7):888-901. PubMed ID: 11458337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcalorimetric measurement of the interactions between water vapor and amorphous pharmaceutical solids.
    Lechuga-Ballesteros D; Bakri A; Miller DP
    Pharm Res; 2003 Feb; 20(2):308-18. PubMed ID: 12636173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water.
    Marsac PJ; Konno H; Rumondor AC; Taylor LS
    Pharm Res; 2008 Mar; 25(3):647-56. PubMed ID: 17846870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deliquescence: Hygroscopicity of Water-Soluble Crystalline Solids.
    Tereshchenko AG
    J Pharm Sci; 2015 Nov; 104(11):3639-3652. PubMed ID: 26202663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.
    Xiang TX; Anderson BD
    J Pharm Sci; 2013 Mar; 102(3):876-91. PubMed ID: 23280486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.